1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<!--Converted with LaTeX2HTML 97.1 (release) (July 13th, 1997)
by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippman, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Apparent Place to Observed Place</TITLE>
<META NAME="description" CONTENT="Apparent Place to Observed Place">
<META NAME="keywords" CONTENT="sun67">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso_8859_1">
<LINK REL="STYLESHEET" HREF="sun67.css">
<LINK REL="next" HREF="node216.html">
<LINK REL="previous" HREF="node212.html">
<LINK REL="up" HREF="node197.html">
<LINK REL="next" HREF="node214.html">
</HEAD>
<BODY >
<BR> <HR>
<A NAME="tex2html2581" HREF="node214.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next_motif.gif"></A>
<A NAME="tex2html2579" HREF="node197.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up_motif.gif"></A>
<A NAME="tex2html2573" HREF="node212.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="previous_motif.gif"></A> <A HREF="sun67.html#stardoccontents"><IMG ALIGN="BOTTOM" BORDER="0"
SRC="contents_motif.gif"></A>
<BR>
<B> Next:</B> <A NAME="tex2html2582" HREF="node214.html">Refraction</A>
<BR>
<B>Up:</B> <A NAME="tex2html2580" HREF="node197.html">EXPLANATION AND EXAMPLES</A>
<BR>
<B> Previous:</B> <A NAME="tex2html2574" HREF="node212.html">Mean Place to Apparent Place</A>
<BR> <HR> <P>
<P><!--End of Navigation Panel-->
<H2><A NAME="SECTION000513000000000000000">
Apparent Place to Observed Place</A>
</H2>
The <I>observed place</I> of a source is its position as
seen by a perfect theodolite at the location of the
observer. Transformation of an apparent <IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img3.gif"
ALT="$[\,\alpha,\delta\,]$"> to observed
place involves the following effects:
<P><UL>
<LI> <IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img3.gif"
ALT="$[\,\alpha,\delta\,]$"> to <IMG WIDTH="41" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img29.gif"
ALT="$[\,h,\delta\,]$">.<LI> Diurnal aberration.
<LI> <IMG WIDTH="41" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img29.gif"
ALT="$[\,h,\delta\,]$"> to <IMG WIDTH="66" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img28.gif"
ALT="$[\,Az,El~]$">.<LI> Refraction.
</UL>
The transformation from apparent <IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img3.gif"
ALT="$[\,\alpha,\delta\,]$"> to
apparent <IMG WIDTH="41" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img29.gif"
ALT="$[\,h,\delta\,]$"> is made by allowing for
<I>Earth rotation</I> through the <I>sidereal time</I>, <IMG WIDTH="10" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img298.gif"
ALT="$\theta$">:
<P ALIGN="CENTER"><IMG WIDTH="70" HEIGHT="25"
SRC="img299.gif"
ALT="\begin{displaymath}
h = \theta - \alpha \end{displaymath}"></P>
For this equation to work, <IMG WIDTH="13" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="img24.gif"
ALT="$\alpha$"> must be the apparent right
ascension for the time of observation, and <IMG WIDTH="10" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
SRC="img298.gif"
ALT="$\theta$"> must be
the <I>local apparent sidereal time</I>. The latter is obtained
as follows:
<DL COMPACT>
<DT>1.
<DD>from civil time obtain the coordinated universal time, UTC
(more later on this);
<DT>2.
<DD>add the UT1-UTC (typically a few tenths of a second) to
give the UT;
<DT>3.
<DD>from the UT compute the Greenwich mean sidereal time (using
sla_GMST);
<DT>4.
<DD>add the observer's (east) longitude, giving the local mean
sidereal time;
<DT>5.
<DD>add the equation of the equinoxes (using
sla_EQEQX).
</DL>
The <I>equation of the equinoxes</I> (<IMG WIDTH="78" HEIGHT="27" ALIGN="MIDDLE" BORDER="0"
SRC="img300.gif"
ALT="$=\Delta\psi\cos\epsilon$"> plus
small terms)
is the effect of nutation on the sidereal time.
Its value is typically a second or less. It is
interesting to note that if the object of the exercise is to
transform a mean place all the way into an observed place (very
often the case),
then the equation of the
equinoxes and the longitude component of nutation can both be
omitted, removing a great deal of computation. However, SLALIB
follows the normal convention and works <I>via</I> the apparent place.
<P>
Note that for very precise work the observer's longitude should
be corrected for <I>polar motion</I>. This can be done with
sla_POLMO.
The corrections are always less than about
<IMG WIDTH="23" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img32.gif"
ALT="$0\hspace{-0.05em}^{'\hspace{-0.1em}'}\hspace{-0.4em}.3$"> , and
are futile unless the position of the observer's telescope is known
to better than a few metres.
<P>
Tables of observed and
predicted UT1-UTC corrections and polar motion data
are published every few weeks by the International Earth Rotation Service.
<P>
The transformation from apparent <IMG WIDTH="41" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img29.gif"
ALT="$[\,h,\delta\,]$"> to <I>topocentric</I>
<IMG WIDTH="41" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img29.gif"
ALT="$[\,h,\delta\,]$"> consists of allowing for
<I>diurnal aberration</I>. This effect, maximum amplitude
<IMG WIDTH="23" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
SRC="img76.gif"
ALT="$0\hspace{-0.05em}^{'\hspace{-0.1em}'}\hspace{-0.4em}.2$"> ,
was described earlier. There is no specific SLALIB routine
for computing the diurnal aberration,
though the routines
sla_AOP <I>etc.</I> include it, and the required velocity vector can be
determined by calling
sla_GEOC.
<P>
The next stage is the major coordinate rotation from local equatorial
coordinates <IMG WIDTH="41" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
SRC="img29.gif"
ALT="$[\,h,\delta\,]$"> into horizon coordinates. The SLALIB routines
sla_E2H
<I>etc.</I> can be used for this. For high-precision
applications the mean geodetic latitude should be corrected for polar
motion.
<P>
<BR><HR>
<!--Table of Child-Links-->
<A NAME="CHILD_LINKS"> </A>
<UL>
<LI><A NAME="tex2html2583" HREF="node214.html#SECTION000513100000000000000">
Refraction</A>
<LI><A NAME="tex2html2584" HREF="node215.html#SECTION000513200000000000000">
Efficiency considerations</A>
</UL>
<!--End of Table of Child-Links-->
<BR> <HR>
<A NAME="tex2html2581" HREF="node214.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next_motif.gif"></A>
<A NAME="tex2html2579" HREF="node197.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up_motif.gif"></A>
<A NAME="tex2html2573" HREF="node212.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="previous_motif.gif"></A> <A HREF="sun67.html#stardoccontents"><IMG ALIGN="BOTTOM" BORDER="0"
SRC="contents_motif.gif"></A>
<BR>
<B> Next:</B> <A NAME="tex2html2582" HREF="node214.html">Refraction</A>
<BR>
<B>Up:</B> <A NAME="tex2html2580" HREF="node197.html">EXPLANATION AND EXAMPLES</A>
<BR>
<B> Previous:</B> <A NAME="tex2html2574" HREF="node212.html">Mean Place to Apparent Place</A>
<BR> <HR> <P>
<P><!--End of Navigation Panel-->
<ADDRESS>
<I>SLALIB --- Positional Astronomy Library<BR>Starlink User Note 67<BR>P. T. Wallace<BR>12 October 1999<BR>E-mail:ptw@star.rl.ac.uk</I>
</ADDRESS>
</BODY>
</HTML>
|