aboutsummaryrefslogtreecommitdiff
path: root/src/slalib/sun67.htx/node23.html
blob: dfb0e2414cbe88e56bdbfe7942bf0dd486352902 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<!--Converted with LaTeX2HTML 97.1 (release) (July 13th, 1997)
 by Nikos Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds
* revised and updated by:  Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
  Jens Lippman, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>SLA_AOPQK - Quick Appt-to-Observed</TITLE>
<META NAME="description" CONTENT="SLA_AOPQK - Quick Appt-to-Observed">
<META NAME="keywords" CONTENT="sun67">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso_8859_1">
<LINK REL="STYLESHEET" HREF="sun67.css">
<LINK REL="next" HREF="node24.html">
<LINK REL="previous" HREF="node22.html">
<LINK REL="up" HREF="node13.html">
<LINK REL="next" HREF="node24.html">
</HEAD>
<BODY >
<BR> <HR>
<A NAME="tex2html656" HREF="node24.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next_motif.gif"></A> 
<A NAME="tex2html654" HREF="node13.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up_motif.gif"></A> 
<A NAME="tex2html648" HREF="node22.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="previous_motif.gif"></A>   <A HREF="sun67.html#stardoccontents"><IMG  ALIGN="BOTTOM" BORDER="0"
 SRC="contents_motif.gif"></A>
<BR>
<B> Next:</B> <A NAME="tex2html657" HREF="node24.html">SLA_ATMDSP - Atmospheric Dispersion</A>
<BR>
<B>Up:</B> <A NAME="tex2html655" HREF="node13.html">SUBPROGRAM SPECIFICATIONS</A>
<BR>
<B> Previous:</B> <A NAME="tex2html649" HREF="node22.html">SLA_AOPPAT - Update Appt-to-Obs Parameters</A>
<BR> <HR> <P>
<P><!--End of Navigation Panel-->
<H2><A NAME="SECTION000410000000000000000">SLA_AOPQK - Quick Appt-to-Observed</A>
<A NAME="xref_SLA_AOPQK">&#160;</A><A NAME="SLA_AOPQK">&#160;</A>
</H2>
       <DL>
<DT><STRONG>ACTION:</STRONG>
<DD>Quick apparent to observed place (but see Note&nbsp;8, below).
<DT><STRONG>CALL:</STRONG>
<DD><TT>CALL sla_AOPQK (RAP, DAP, AOPRMS, AOB, ZOB, HOB, DOB, ROB)</TT>
<P>       </DL>
<P>     <DL>
<DT><STRONG>GIVEN:</STRONG>
<DD>
<BR>
<TABLE CELLPADDING=3>
<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM>RAP,DAP</EM></TD>
<TH ALIGN="LEFT"><B>D</B></TH>
<TD ALIGN="LEFT" NOWRAP>geocentric apparent <IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img3.gif"
 ALT="$[\,\alpha,\delta\,]$"> (radians)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM>AOPRMS</EM></TD>
<TD ALIGN="LEFT"><B>D(14)</B></TD>
<TD ALIGN="LEFT" NOWRAP>star-independent apparent-to-observed parameters:</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(1)</TD>
<TD></TD>
<TD ALIGN="LEFT" NOWRAP>geodetic latitude (radians)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(2,3)</TD>
<TD></TD>
<TD ALIGN="LEFT" NOWRAP>sine and cosine of geodetic latitude</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(4)</TD>
<TD></TD>
<TD ALIGN="LEFT" NOWRAP>magnitude of diurnal aberration vector</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(5)</TD>
<TD></TD>
<TD ALIGN="LEFT" NOWRAP>height (metres)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(6)</TD>
<TD></TD>
<TD ALIGN="LEFT" NOWRAP>ambient temperature (degrees K)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(7)</TD>
<TD></TD>
<TD ALIGN="LEFT" NOWRAP>pressure (mB)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(8)</TD>
<TD></TD>
<TD ALIGN="LEFT" NOWRAP>relative humidity (0-1)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(9)</TD>
<TD></TD>
<TD ALIGN="LEFT" NOWRAP>wavelength (<IMG WIDTH="26" HEIGHT="25" ALIGN="MIDDLE" BORDER="0"
 SRC="img21.gif"
 ALT="$\mu{\rm m}$">)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(10)</TD>
<TD></TD>
<TD ALIGN="LEFT" NOWRAP>lapse rate (degrees K per metre)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(11,12)</TD>
<TD></TD>
<TD ALIGN="LEFT" NOWRAP>refraction constants A and B (radians)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(13)</TD>
<TD></TD>
<TD ALIGN="LEFT" NOWRAP>longitude + eqn of equinoxes +
``sidereal <IMG WIDTH="16" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
 SRC="img19.gif"
 ALT="$\Delta$">UT'' (radians)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="CENTER" NOWRAP COLSPAN=1>(14)</TD>
<TD></TD>
<TD ALIGN="LEFT" NOWRAP>local apparent sidereal time (radians)</TD>
</TR>
</TABLE></DL>
<P>     <DL>
<DT><STRONG>RETURNED:</STRONG>
<DD>
<BR>
<TABLE CELLPADDING=3>
<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM>AOB</EM></TD>
<TH ALIGN="LEFT"><B>D</B></TH>
<TD ALIGN="LEFT" NOWRAP>observed azimuth (radians: N=0, E=<IMG WIDTH="26" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="img22.gif"
 ALT="$90^{\circ}$">)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM>ZOB</EM></TD>
<TD ALIGN="LEFT"><B>D</B></TD>
<TD ALIGN="LEFT" NOWRAP>observed zenith distance (radians)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM>HOB</EM></TD>
<TD ALIGN="LEFT"><B>D</B></TD>
<TD ALIGN="LEFT" NOWRAP>observed Hour Angle (radians)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM>DOB</EM></TD>
<TD ALIGN="LEFT"><B>D</B></TD>
<TD ALIGN="LEFT" NOWRAP>observed Declination (radians)</TD>
</TR>
<TR VALIGN="TOP"><TD ALIGN="LEFT"><EM>ROB</EM></TD>
<TD ALIGN="LEFT"><B>D</B></TD>
<TD ALIGN="LEFT" NOWRAP>observed Right Ascension (radians)</TD>
</TR>
</TABLE></DL>
<P>      <DL>
<DT><STRONG>NOTES:</STRONG>
<DD><DL COMPACT>
<DT>1.
<DD>This routine returns zenith distance rather than elevation
in order to reflect the fact that no allowance is made for
depression of the horizon.
  <DT>2.
<DD>The accuracy of the result is limited by the corrections for
        refraction.  Providing the meteorological parameters are
        known accurately and there are no gross local effects, the
        predicted azimuth and elevation should be within about
<P>      <IMG WIDTH="23" HEIGHT="18" ALIGN="BOTTOM" BORDER="0"
 SRC="img25.gif"
 ALT="$0\hspace{-0.05em}^{'\hspace{-0.1em}'}\hspace{-0.4em}.1$">    for <IMG WIDTH="56" HEIGHT="27" ALIGN="MIDDLE" BORDER="0"
 SRC="img26.gif"
 ALT="$\zeta<70^{\circ}$">.  Even
        at a topocentric zenith distance of
        <IMG WIDTH="26" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="img22.gif"
 ALT="$90^{\circ}$">, the accuracy in elevation should be better than
        1&nbsp;arcminute;  useful results are available for a further
        <IMG WIDTH="18" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="img27.gif"
 ALT="$3^{\circ}$">, beyond which the sla_REFRO routine returns a
        fixed value of the refraction.  The complementary
        routines sla_AOP (or sla_AOPQK) and sla_OAP (or sla_OAPQK)
        are self-consistent to better than 1&nbsp;microarcsecond all over
        the celestial sphere.
  <DT>3.
<DD>It is advisable to take great care with units, as even
        unlikely values of the input parameters are accepted and
        processed in accordance with the models used.
  <DT>4.
<DD><I>Apparent</I> <IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img3.gif"
 ALT="$[\,\alpha,\delta\,]$"> means the geocentric apparent right ascension
        and declination, which is obtained from a catalogue mean place
        by allowing for space motion, parallax, precession, nutation,
        annual aberration, and the Sun's gravitational lens effect.  For
        star positions in the FK5 system (<I>i.e.</I> J2000), these effects can
        be applied by means of the sla_MAP <I>etc.</I> routines.  Starting from
        other mean place systems, additional transformations will be
        needed;  for example, FK4 (<I>i.e.</I> B1950) mean places would first
        have to be converted to FK5, which can be done with the
        sla_FK425 <I>etc.</I> routines.
  <DT>5.
<DD><I>Observed</I> <IMG WIDTH="66" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img28.gif"
 ALT="$[\,Az,El~]$"> means the position that would be seen by a
        perfect theodolite located at the observer.  This is obtained
        from the geocentric apparent <IMG WIDTH="42" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img3.gif"
 ALT="$[\,\alpha,\delta\,]$"> by allowing for Earth
        orientation and diurnal aberration, rotating from equator
        to horizon coordinates, and then adjusting for refraction.
        The <IMG WIDTH="41" HEIGHT="29" ALIGN="MIDDLE" BORDER="0"
 SRC="img29.gif"
 ALT="$[\,h,\delta\,]$"> is obtained by rotating back into equatorial
        coordinates, using the geodetic latitude corrected for polar
        motion, and is the position that would be seen by a perfect
        equatorial located at the observer and with its polar axis
        aligned to the Earth's axis of rotation (<I>n.b.</I> not to the
        refracted pole).  Finally, the <IMG WIDTH="13" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="img24.gif"
 ALT="$\alpha$"> is obtained by subtracting
        the <I>h</I> from the local apparent ST.
  <DT>6.
<DD>To predict the required setting of a real telescope, the
        observed place produced by this routine would have to be
        adjusted for the tilt of the azimuth or polar axis of the
        mounting (with appropriate corrections for mount flexures),
        for non-perpendicularity between the mounting axes, for the
        position of the rotator axis and the pointing axis relative
        to it, for tube flexure, for gear and encoder errors, and
        finally for encoder zero points.  Some telescopes would, of
        course, exhibit other properties which would need to be
        accounted for at the appropriate point in the sequence.
  <DT>7.
<DD>The star-independent apparent-to-observed-place parameters
        in AOPRMS may be computed by means of the sla_AOPPA routine.
        If nothing has changed significantly except the time, the
        sla_AOPPAT routine may be used to perform the requisite
        partial recomputation of AOPRMS.
  <DT>8.
<DD>The  ``sidereal <IMG WIDTH="16" HEIGHT="13" ALIGN="BOTTOM" BORDER="0"
 SRC="img19.gif"
 ALT="$\Delta$">UT'' which forms part of AOPRMS(13)
        is UT1-UTC converted from solar to
        sidereal seconds and expressed in radians.
  <DT>9.
<DD>At zenith distances beyond about <IMG WIDTH="26" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="img33.gif"
 ALT="$76^\circ$">, the need for
        special care with the corrections for refraction causes a
        marked increase in execution time.  Moreover, the effect
        gets worse with increasing zenith distance.  Adroit
        programming in the calling application may allow the
        problem to be reduced.  Prepare an alternative AOPRMS array,
        computed for zero air-pressure;  this will disable the
        refraction corrections and cause rapid execution.  Using
        this AOPRMS array, a preliminary call to the present routine
        will, depending on the application, produce a rough position
        which may be enough to establish whether the full, slow
        calculation (using the real AOPRMS array) is worthwhile.
        For example, there would be no need for the full calculation
        if the preliminary call had already established that the
        source was well below the elevation limits for a particular
        telescope.
  <DT>10.
<DD>The azimuths <I>etc.</I> used by the present routine are with
        respect to the celestial pole.  Corrections to the terrestrial pole
        can be computed using sla_POLMO.
 </DL></DL>
<BR> <HR>
<A NAME="tex2html656" HREF="node24.html">
<IMG WIDTH="37" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="next" SRC="next_motif.gif"></A> 
<A NAME="tex2html654" HREF="node13.html">
<IMG WIDTH="26" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="up" SRC="up_motif.gif"></A> 
<A NAME="tex2html648" HREF="node22.html">
<IMG WIDTH="63" HEIGHT="24" ALIGN="BOTTOM" BORDER="0" ALT="previous" SRC="previous_motif.gif"></A>   <A HREF="sun67.html#stardoccontents"><IMG  ALIGN="BOTTOM" BORDER="0"
 SRC="contents_motif.gif"></A>
<BR>
<B> Next:</B> <A NAME="tex2html657" HREF="node24.html">SLA_ATMDSP - Atmospheric Dispersion</A>
<BR>
<B>Up:</B> <A NAME="tex2html655" HREF="node13.html">SUBPROGRAM SPECIFICATIONS</A>
<BR>
<B> Previous:</B> <A NAME="tex2html649" HREF="node22.html">SLA_AOPPAT - Update Appt-to-Obs Parameters</A>
<BR> <HR> <P>
<P><!--End of Navigation Panel-->
<ADDRESS>
<I>SLALIB --- Positional Astronomy Library<BR>Starlink User Note 67<BR>P. T. Wallace<BR>12 October 1999<BR>E-mail:ptw@star.rl.ac.uk</I>
</ADDRESS>
</BODY>
</HTML>