aboutsummaryrefslogtreecommitdiff
path: root/src/slalib/tpv2c.f
blob: 7afe25d42410afe31c210a842cfa7e556b73d1fb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
SUBROUTINE sla_TPV2C (XI, ETA, V, V01, V02, N)
*+
*     - - - - - -
*      T P V 2 C
*     - - - - - -
*
*  Given the tangent-plane coordinates of a star and its direction
*  cosines, determine the direction cosines of the tangent-point.
*
*  (single precision)
*
*  Given:
*     XI,ETA    r       tangent plane coordinates of star
*     V         r(3)    direction cosines of star
*
*  Returned:
*     V01       r(3)    direction cosines of tangent point, solution 1
*     V02       r(3)    direction cosines of tangent point, solution 2
*     N         i       number of solutions:
*                         0 = no solutions returned (note 2)
*                         1 = only the first solution is useful (note 3)
*                         2 = both solutions are useful (note 3)
*
*  Notes:
*
*  1  The vector V must be of unit length or the result will be wrong.
*
*  2  Cases where there is no solution can only arise near the poles.
*     For example, it is clearly impossible for a star at the pole
*     itself to have a non-zero XI value, and hence it is meaningless
*     to ask where the tangent point would have to be.
*
*  3  Also near the poles, cases can arise where there are two useful
*     solutions.  The argument N indicates whether the second of the
*     two solutions returned is useful.  N=1 indicates only one useful
*     solution, the usual case;  under these circumstances, the second
*     solution can be regarded as valid if the vector V02 is interpreted
*     as the "over-the-pole" case.
*
*  4  This routine is the Cartesian equivalent of the routine sla_TPS2C.
*
*  P.T.Wallace   Starlink   5 June 1995
*
*  Copyright (C) 1995 Rutherford Appleton Laboratory
*-

      IMPLICIT NONE

      REAL XI,ETA,V(3),V01(3),V02(3)
      INTEGER N

      REAL X,Y,Z,RXY2,XI2,ETA2P1,SDF,R2,R,C


      X=V(1)
      Y=V(2)
      Z=V(3)
      RXY2=X*X+Y*Y
      XI2=XI*XI
      ETA2P1=ETA*ETA+1.0
      SDF=Z*SQRT(XI2+ETA2P1)
      R2=RXY2*ETA2P1-Z*Z*XI2
      IF (R2.GT.0.0) THEN
         R=SQRT(R2)
         C=(SDF*ETA+R)/(ETA2P1*SQRT(RXY2*(R2+XI2)))
         V01(1)=C*(X*R+Y*XI)
         V01(2)=C*(Y*R-X*XI)
         V01(3)=(SDF-ETA*R)/ETA2P1
         R=-R
         C=(SDF*ETA+R)/(ETA2P1*SQRT(RXY2*(R2+XI2)))
         V02(1)=C*(X*R+Y*XI)
         V02(2)=C*(Y*R-X*XI)
         V02(3)=(SDF-ETA*R)/ETA2P1
         IF (ABS(SDF).LT.1.0) THEN
            N=1
         ELSE
            N=2
         END IF
      ELSE
         N=0
      END IF

      END