aboutsummaryrefslogtreecommitdiff
path: root/math/curfit/cv_b1evalr.x
diff options
context:
space:
mode:
authorJoseph Hunkeler <jhunkeler@gmail.com>2015-07-08 20:46:52 -0400
committerJoseph Hunkeler <jhunkeler@gmail.com>2015-07-08 20:46:52 -0400
commitfa080de7afc95aa1c19a6e6fc0e0708ced2eadc4 (patch)
treebdda434976bc09c864f2e4fa6f16ba1952b1e555 /math/curfit/cv_b1evalr.x
downloadiraf-linux-fa080de7afc95aa1c19a6e6fc0e0708ced2eadc4.tar.gz
Initial commit
Diffstat (limited to 'math/curfit/cv_b1evalr.x')
-rw-r--r--math/curfit/cv_b1evalr.x110
1 files changed, 110 insertions, 0 deletions
diff --git a/math/curfit/cv_b1evalr.x b/math/curfit/cv_b1evalr.x
new file mode 100644
index 00000000..fd6fb8e7
--- /dev/null
+++ b/math/curfit/cv_b1evalr.x
@@ -0,0 +1,110 @@
+# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
+
+# CV_B1LEG -- Procedure to evaluate all the non-zero Legendrefunctions for
+# a single point and given order.
+
+procedure rcv_b1leg (x, order, k1, k2, basis)
+
+real x # array of data points
+int order # order of polynomial, order = 1, constant
+real k1, k2 # normalizing constants
+real basis[ARB] # basis functions
+
+int i
+real ri, xnorm
+
+begin
+ basis[1] = real(1.0)
+ if (order == 1)
+ return
+
+ xnorm = (x + k1) * k2
+ basis[2] = xnorm
+ if (order == 2)
+ return
+
+ do i = 3, order {
+ ri = i
+ basis[i] = ((real(2.0) * ri - real(3.0)) * xnorm * basis[i-1] -
+ (ri - real(2.0)) * basis[i-2]) / (ri - real(1.0))
+ }
+end
+
+
+# CV_B1CHEB -- Procedure to evaluate all the non zero Chebyshev function
+# for a given x and order.
+
+procedure rcv_b1cheb (x, order, k1, k2, basis)
+
+real x # number of data points
+int order # order of polynomial, 1 is a constant
+real k1, k2 # normalizing constants
+real basis[ARB] # array of basis functions
+
+int i
+real xnorm
+
+begin
+ basis[1] = real(1.0)
+ if (order == 1)
+ return
+
+ xnorm = (x + k1) * k2
+ basis[2] = xnorm
+ if (order == 2)
+ return
+
+ do i = 3, order
+ basis[i] = real(2.0) * xnorm * basis[i-1] - basis[i-2]
+end
+
+
+# CV_B1SPLINE1 -- Evaluate all the non-zero spline1 functions for a
+# single point.
+
+procedure rcv_b1spline1 (x, npieces, k1, k2, basis, left)
+
+real x # set of data points
+int npieces # number of polynomial pieces minus 1
+real k1, k2 # normalizing constants
+real basis[ARB] # basis functions
+int left # index of the appropriate spline functions
+
+real xnorm
+
+begin
+ xnorm = (x + k1) * k2
+ left = min (int (xnorm), npieces)
+
+ basis[2] = max (real(0.0), min (real(1.0), xnorm - left))
+ basis[1] = max (real(0.0), min (real(1.0), real(1.0) - basis[2]))
+end
+
+
+# CV_B1SPLINE3 -- Procedure to evaluate all the non-zero basis functions
+# for a cubic spline.
+
+procedure rcv_b1spline3 (x, npieces, k1, k2, basis, left)
+
+real x # array of data points
+int npieces # number of polynomial pieces
+real k1, k2 # normalizing constants
+real basis[ARB] # array of basis functions
+int left # array of indices for first non-zero spline
+
+real sx, tx
+
+begin
+ sx = (x + k1) * k2
+ left = min (int (sx), npieces)
+
+ sx = max (real(0.0), min (real(1.0), sx - left))
+ tx = max (real(0.0), min (real(1.0), real(1.0) - sx))
+
+ basis[1] = tx * tx * tx
+ basis[2] = real(1.0) + tx * (real(3.0) + tx * (real(3.0) -
+ real(3.0) * tx))
+ basis[3] = real(1.0) + sx * (real(3.0) + sx * (real(3.0) -
+ real(3.0) * sx))
+ basis[4] = sx * sx * sx
+end