aboutsummaryrefslogtreecommitdiff
path: root/math/curfit/cv_feval.gx
diff options
context:
space:
mode:
authorJoseph Hunkeler <jhunkeler@gmail.com>2015-07-08 20:46:52 -0400
committerJoseph Hunkeler <jhunkeler@gmail.com>2015-07-08 20:46:52 -0400
commitfa080de7afc95aa1c19a6e6fc0e0708ced2eadc4 (patch)
treebdda434976bc09c864f2e4fa6f16ba1952b1e555 /math/curfit/cv_feval.gx
downloadiraf-linux-fa080de7afc95aa1c19a6e6fc0e0708ced2eadc4.tar.gz
Initial commit
Diffstat (limited to 'math/curfit/cv_feval.gx')
-rw-r--r--math/curfit/cv_feval.gx242
1 files changed, 242 insertions, 0 deletions
diff --git a/math/curfit/cv_feval.gx b/math/curfit/cv_feval.gx
new file mode 100644
index 00000000..759bb193
--- /dev/null
+++ b/math/curfit/cv_feval.gx
@@ -0,0 +1,242 @@
+# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
+
+# CV_EVCHEB -- Procedure to evaluate a Chebyshev polynomial assuming that
+# the coefficients have been calculated.
+
+procedure $tcv_evcheb (coeff, x, yfit, npts, order, k1, k2)
+
+PIXEL coeff[ARB] # 1D array of coefficients
+PIXEL x[npts] # x values of points to be evaluated
+PIXEL yfit[npts] # the fitted points
+int npts # number of points to be evaluated
+int order # order of the polynomial, 1 = constant
+PIXEL k1, k2 # normalizing constants
+
+int i
+pointer sx, pn, pnm1, pnm2
+pointer sp
+PIXEL c1, c2
+
+begin
+ # fit a constant
+ if (order == 1) {
+ call amovk$t (coeff[1], yfit, npts)
+ return
+ }
+
+ # fit a linear function
+ c1 = k2 * coeff[2]
+ c2 = c1 * k1 + coeff[1]
+ call altm$t (x, yfit, npts, c1, c2)
+ if (order == 2)
+ return
+
+ # allocate temporary space
+ call smark (sp)
+ call salloc (sx, npts, TY_PIXEL)
+ call salloc (pn, npts, TY_PIXEL)
+ call salloc (pnm1, npts, TY_PIXEL)
+ call salloc (pnm2, npts, TY_PIXEL)
+
+ # a higher order polynomial
+ call amovk$t (PIXEL(1.0), Mem$t[pnm2], npts)
+ call alta$t (x, Mem$t[sx], npts, k1, k2)
+ call amov$t (Mem$t[sx], Mem$t[pnm1], npts)
+ call amulk$t (Mem$t[sx], PIXEL(2.0), Mem$t[sx], npts)
+ do i = 3, order {
+ call amul$t (Mem$t[sx], Mem$t[pnm1], Mem$t[pn], npts)
+ call asub$t (Mem$t[pn], Mem$t[pnm2], Mem$t[pn], npts)
+ if (i < order) {
+ call amov$t (Mem$t[pnm1], Mem$t[pnm2], npts)
+ call amov$t (Mem$t[pn], Mem$t[pnm1], npts)
+ }
+ call amulk$t (Mem$t[pn], coeff[i], Mem$t[pn], npts)
+ call aadd$t (yfit, Mem$t[pn], yfit, npts)
+ }
+
+ # free temporary space
+ call sfree (sp)
+
+end
+
+# CV_EVLEG -- Procedure to evaluate a Legendre polynomial assuming that
+# the coefficients have been calculated.
+
+procedure $tcv_evleg (coeff, x, yfit, npts, order, k1, k2)
+
+PIXEL coeff[ARB] # 1D array of coefficients
+PIXEL x[npts] # x values of points to be evaluated
+PIXEL yfit[npts] # the fitted points
+int npts # number of data points
+int order # order of the polynomial, 1 = constant
+PIXEL k1, k2 # normalizing constants
+
+int i
+pointer sx, pn, pnm1, pnm2
+pointer sp
+PIXEL ri, ri1, ri2
+
+begin
+
+ # fit a constant
+ if (order == 1) {
+ call amovk$t (coeff[1], yfit, npts)
+ return
+ }
+
+ # fit a linear function
+ ri1 = k2 * coeff[2]
+ ri2 = ri1 * k1 + coeff[1]
+ call altm$t (x, yfit, npts, ri1, ri2)
+ if (order == 2)
+ return
+
+ # allocate temporary space
+ call smark (sp)
+ call salloc (sx, npts, TY_PIXEL)
+ call salloc (pn, npts, TY_PIXEL)
+ call salloc (pnm1, npts, TY_PIXEL)
+ call salloc (pnm2, npts, TY_PIXEL)
+
+ # a higher order polynomial
+ call amovk$t (PIXEL(1.0), Mem$t[pnm2], npts)
+ call alta$t (x, Mem$t[sx], npts, k1, k2)
+ call amov$t (Mem$t[sx], Mem$t[pnm1], npts)
+ do i = 3, order {
+ ri = i
+ ri1 = (PIXEL(2.0) * ri - PIXEL(3.0)) / (ri - PIXEL(1.0))
+ ri2 = - (ri - PIXEL(2.0)) / (ri - PIXEL(1.0))
+ call amul$t (Mem$t[sx], Mem$t[pnm1], Mem$t[pn], npts)
+ call awsu$t (Mem$t[pn], Mem$t[pnm2], Mem$t[pn], npts, ri1, ri2)
+ if (i < order) {
+ call amov$t (Mem$t[pnm1], Mem$t[pnm2], npts)
+ call amov$t (Mem$t[pn], Mem$t[pnm1], npts)
+ }
+ call amulk$t (Mem$t[pn], coeff[i], Mem$t[pn], npts)
+ call aadd$t (yfit, Mem$t[pn], yfit, npts)
+ }
+
+ # free temporary space
+ call sfree (sp)
+
+end
+
+# CV_EVSPLINE1 -- Procedure to evaluate a piecewise linear spline function
+# assuming that the coefficients have been calculated.
+
+procedure $tcv_evspline1 (coeff, x, yfit, npts, npieces, k1, k2)
+
+PIXEL coeff[ARB] # array of coefficients
+PIXEL x[npts] # array of x values
+PIXEL yfit[npts] # array of fitted values
+int npts # number of data points
+int npieces # number of fitted points minus 1
+PIXEL k1, k2 # normalizing constants
+
+int j
+pointer sx, tx, azindex, aindex, index
+pointer sp
+
+begin
+
+ # allocate the required space
+ call smark (sp)
+ call salloc (sx, npts, TY_PIXEL)
+ call salloc (tx, npts, TY_PIXEL)
+ call salloc (index, npts, TY_INT)
+
+ # calculate the index of the first non-zero coefficient
+ # for each point
+ call alta$t (x, Mem$t[sx], npts, k1, k2)
+ call acht$ti (Mem$t[sx], Memi[index], npts)
+ call aminki (Memi[index], npieces, Memi[index], npts)
+
+ # transform sx to range 0 to 1
+ azindex = sx - 1
+ do j = 1, npts {
+ aindex = azindex + j
+ Mem$t[aindex] = max (PIXEL(0.0), min (PIXEL(1.0), Mem$t[aindex] -
+ Memi[index+j-1]))
+ Mem$t[tx+j-1] = max (PIXEL(0.0), min (PIXEL(1.0), PIXEL(1.0) -
+ Mem$t[aindex]))
+ }
+
+ # calculate yfit using the two non-zero basis function
+ do j = 1, npts
+ yfit[j] = Mem$t[tx+j-1] * coeff[1+Memi[index+j-1]] +
+ Mem$t[sx+j-1] * coeff[2+Memi[index+j-1]]
+
+ # free space
+ call sfree (sp)
+
+end
+
+# CV_EVSPLINE3 -- Procedure to evaluate the cubic spline assuming that
+# the coefficients of the fit are known.
+
+procedure $tcv_evspline3 (coeff, x, yfit, npts, npieces, k1, k2)
+
+PIXEL coeff[ARB] # array of coeffcients
+PIXEL x[npts] # array of x values
+PIXEL yfit[npts] # array of fitted values
+int npts # number of data points
+int npieces # number of polynomial pieces
+PIXEL k1, k2 # normalizing constants
+
+int i, j
+pointer sx, tx, temp, index, sp
+
+begin
+
+ # allocate the required space
+ call smark (sp)
+ call salloc (sx, npts, TY_PIXEL)
+ call salloc (tx, npts, TY_PIXEL)
+ call salloc (temp, npts, TY_PIXEL)
+ call salloc (index, npts, TY_INT)
+
+ # calculate to which coefficients the x values contribute to
+ call alta$t (x, Mem$t[sx], npts, k1, k2)
+ call acht$ti (Mem$t[sx], Memi[index], npts)
+ call aminki (Memi[index], npieces, Memi[index], npts)
+
+ # transform sx to range 0 to 1
+ do j = 1, npts {
+ Mem$t[sx+j-1] = max (PIXEL(0.0), min (PIXEL(1.0), Mem$t[sx+j-1] -
+ Memi[index+j-1]))
+ Mem$t[tx+j-1] = max (PIXEL(0.0), min (PIXEL(1.0), PIXEL(1.0) -
+ Mem$t[sx+j-1]))
+ }
+
+ # calculate yfit using the four non-zero basis function
+ call aclr$t (yfit, npts)
+ do i = 1, 4 {
+
+ switch (i) {
+ case 1:
+ call apowk$t (Mem$t[tx], 3, Mem$t[temp], npts)
+ case 2:
+ do j = 1, npts {
+ Mem$t[temp+j-1] = PIXEL(1.0) + Mem$t[tx+j-1] *
+ (PIXEL(3.0) + Mem$t[tx+j-1] * (PIXEL(3.0) -
+ PIXEL(3.0) * Mem$t[tx+j-1]))
+ }
+ case 3:
+ do j = 1, npts {
+ Mem$t[temp+j-1] = PIXEL(1.0) + Mem$t[sx+j-1] *
+ (PIXEL(3.0) + Mem$t[sx+j-1] * (PIXEL(3.0) -
+ PIXEL(3.0) * Mem$t[sx+j-1]))
+ }
+ case 4:
+ call apowk$t (Mem$t[sx], 3, Mem$t[temp], npts)
+ }
+
+ do j = 1, npts
+ Mem$t[temp+j-1] = Mem$t[temp+j-1] * coeff[i+Memi[index+j-1]]
+ call aadd$t (yfit, Mem$t[temp], yfit, npts)
+ }
+
+ # free space
+ call sfree (sp)
+
+end