aboutsummaryrefslogtreecommitdiff
path: root/math/gsurfit/gs_f1deval.gx
diff options
context:
space:
mode:
authorJoseph Hunkeler <jhunkeler@gmail.com>2015-07-08 20:46:52 -0400
committerJoseph Hunkeler <jhunkeler@gmail.com>2015-07-08 20:46:52 -0400
commitfa080de7afc95aa1c19a6e6fc0e0708ced2eadc4 (patch)
treebdda434976bc09c864f2e4fa6f16ba1952b1e555 /math/gsurfit/gs_f1deval.gx
downloadiraf-linux-fa080de7afc95aa1c19a6e6fc0e0708ced2eadc4.tar.gz
Initial commit
Diffstat (limited to 'math/gsurfit/gs_f1deval.gx')
-rw-r--r--math/gsurfit/gs_f1deval.gx189
1 files changed, 189 insertions, 0 deletions
diff --git a/math/gsurfit/gs_f1deval.gx b/math/gsurfit/gs_f1deval.gx
new file mode 100644
index 00000000..17981daf
--- /dev/null
+++ b/math/gsurfit/gs_f1deval.gx
@@ -0,0 +1,189 @@
+# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
+
+# GS_1DEVPOLY -- Procedure to evaulate a 1D polynomial
+
+procedure $tgs_1devpoly (coeff, x, yfit, npts, order, k1, k2)
+
+PIXEL coeff[ARB] # EV array of coefficients
+PIXEL x[npts] # x values of points to be evaluated
+PIXEL yfit[npts] # the fitted points
+int npts # number of points to be evaluated
+int order # order of the polynomial, 1 = constant
+PIXEL k1, k2 # normalizing constants
+
+int i
+pointer sp, temp
+
+begin
+ # fit a constant
+ call amovk$t (coeff[1], yfit, npts)
+ if (order == 1)
+ return
+
+ # fit a linear function
+ call altm$t (x, yfit, npts, coeff[2], coeff[1])
+ if (order == 2)
+ return
+
+ call smark (sp)
+ $if (datatype == r)
+ call salloc (temp, npts, TY_REAL)
+ $else
+ call salloc (temp, npts, TY_DOUBLE)
+ $endif
+
+ # accumulate the output vector
+ call amov$t (x, Mem$t[temp], npts)
+ do i = 3, order {
+ call amul$t (Mem$t[temp], x, Mem$t[temp], npts)
+ $if (datatype == r)
+ call awsur (yfit, Memr[temp], yfit, npts, 1.0, coeff[i])
+ $else
+ call awsud (yfit, Memd[temp], yfit, npts, 1.0d0, coeff[i])
+ $endif
+ }
+
+ call sfree (sp)
+
+end
+
+# GS_1DEVCHEB -- Procedure to evaluate a Chebyshev polynomial assuming that
+# the coefficients have been calculated.
+
+procedure $tgs_1devcheb (coeff, x, yfit, npts, order, k1, k2)
+
+PIXEL coeff[ARB] # EV array of coefficients
+PIXEL x[npts] # x values of points to be evaluated
+PIXEL yfit[npts] # the fitted points
+int npts # number of points to be evaluated
+int order # order of the polynomial, 1 = constant
+PIXEL k1, k2 # normalizing constants
+
+int i
+pointer sx, pn, pnm1, pnm2
+pointer sp
+PIXEL c1, c2
+
+begin
+ # fit a constant
+ call amovk$t (coeff[1], yfit, npts)
+ if (order == 1)
+ return
+
+ # fit a linear function
+ c1 = k2 * coeff[2]
+ c2 = c1 * k1 + coeff[1]
+ call altm$t (x, yfit, npts, c1, c2)
+ if (order == 2)
+ return
+
+ # allocate temporary space
+ call smark (sp)
+ $if (datatype == r)
+ call salloc (sx, npts, TY_REAL)
+ call salloc (pn, npts, TY_REAL)
+ call salloc (pnm1, npts, TY_REAL)
+ call salloc (pnm2, npts, TY_REAL)
+ $else
+ call salloc (sx, npts, TY_DOUBLE)
+ call salloc (pn, npts, TY_DOUBLE)
+ call salloc (pnm1, npts, TY_DOUBLE)
+ call salloc (pnm2, npts, TY_DOUBLE)
+ $endif
+
+ # a higher order polynomial
+ $if (datatype == r)
+ call amovkr (1., Memr[pnm2], npts)
+ $else
+ call amovkd (1.0d0, Memd[pnm2], npts)
+ $endif
+ call alta$t (x, Mem$t[sx], npts, k1, k2)
+ call amov$t (Mem$t[sx], Mem$t[pnm1], npts)
+ call amulk$t (Mem$t[sx], 2$f, Mem$t[sx], npts)
+ do i = 3, order {
+ call amul$t (Mem$t[sx], Mem$t[pnm1], Mem$t[pn], npts)
+ call asub$t (Mem$t[pn], Mem$t[pnm2], Mem$t[pn], npts)
+ if (i < order) {
+ call amov$t (Mem$t[pnm1], Mem$t[pnm2], npts)
+ call amov$t (Mem$t[pn], Mem$t[pnm1], npts)
+ }
+ call amulk$t (Mem$t[pn], coeff[i], Mem$t[pn], npts)
+ call aadd$t (yfit, Mem$t[pn], yfit, npts)
+ }
+
+ # free temporary space
+ call sfree (sp)
+
+end
+
+
+# GS_1DEVLEG -- Procedure to evaluate a Legendre polynomial assuming that
+# the coefficients have been calculated.
+
+procedure $tgs_1devleg (coeff, x, yfit, npts, order, k1, k2)
+
+PIXEL coeff[ARB] # EV array of coefficients
+PIXEL x[npts] # x values of points to be evaluated
+PIXEL yfit[npts] # the fitted points
+int npts # number of data points
+int order # order of the polynomial, 1 = constant
+PIXEL k1, k2 # normalizing constants
+
+int i
+pointer sx, pn, pnm1, pnm2
+pointer sp
+PIXEL ri, ri1, ri2
+
+begin
+ # fit a constant
+ call amovk$t (coeff[1], yfit, npts)
+ if (order == 1)
+ return
+
+ # fit a linear function
+ ri1 = k2 * coeff[2]
+ ri2 = ri1 * k1 + coeff[1]
+ call altm$t (x, yfit, npts, ri1, ri2)
+ if (order == 2)
+ return
+
+ # allocate temporary space
+ call smark (sp)
+ $if (datatype == r)
+ call salloc (sx, npts, TY_REAL)
+ call salloc (pn, npts, TY_REAL)
+ call salloc (pnm1, npts, TY_REAL)
+ call salloc (pnm2, npts, TY_REAL)
+ $else
+ call salloc (sx, npts, TY_DOUBLE)
+ call salloc (pn, npts, TY_DOUBLE)
+ call salloc (pnm1, npts, TY_DOUBLE)
+ call salloc (pnm2, npts, TY_DOUBLE)
+ $endif
+
+ # a higher order polynomial
+ $if (datatype == r)
+ call amovkr (1., Memr[pnm2], npts)
+ $else
+ call amovkd (1.0d0, Memd[pnm2], npts)
+ $endif
+ call alta$t (x, Mem$t[sx], npts, k1, k2)
+ call amov$t (Mem$t[sx], Mem$t[pnm1], npts)
+ do i = 3, order {
+ ri = i
+ ri1 = (2. * ri - 3.) / (ri - 1.)
+ ri2 = - (ri - 2.) / (ri - 1.)
+ call amul$t (Mem$t[sx], Mem$t[pnm1], Mem$t[pn], npts)
+ call awsu$t (Mem$t[pn], Mem$t[pnm2], Mem$t[pn], npts, ri1, ri2)
+ if (i < order) {
+ call amov$t (Mem$t[pnm1], Mem$t[pnm2], npts)
+ call amov$t (Mem$t[pn], Mem$t[pnm1], npts)
+ }
+ call amulk$t (Mem$t[pn], coeff[i], Mem$t[pn], npts)
+ call aadd$t (yfit, Mem$t[pn], yfit, npts)
+ }
+
+ # free temporary space
+ call sfree (sp)
+
+end