aboutsummaryrefslogtreecommitdiff
path: root/math/llsq/progs/lsq.x
diff options
context:
space:
mode:
authorJoseph Hunkeler <jhunkeler@gmail.com>2015-07-08 20:46:52 -0400
committerJoseph Hunkeler <jhunkeler@gmail.com>2015-07-08 20:46:52 -0400
commitfa080de7afc95aa1c19a6e6fc0e0708ced2eadc4 (patch)
treebdda434976bc09c864f2e4fa6f16ba1952b1e555 /math/llsq/progs/lsq.x
downloadiraf-linux-fa080de7afc95aa1c19a6e6fc0e0708ced2eadc4.tar.gz
Initial commit
Diffstat (limited to 'math/llsq/progs/lsq.x')
-rw-r--r--math/llsq/progs/lsq.x70
1 files changed, 70 insertions, 0 deletions
diff --git a/math/llsq/progs/lsq.x b/math/llsq/progs/lsq.x
new file mode 100644
index 00000000..ae002a16
--- /dev/null
+++ b/math/llsq/progs/lsq.x
@@ -0,0 +1,70 @@
+# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
+
+
+define M 256
+define N 256
+
+task lsq
+
+# This procedure fits a natural cubic spline to an array of n data points.
+# The system being solved is a tridiagonal matrix of n+2 rows. The system
+# is solved by Lawsons and Hansons routine HFTI, which solves a general
+# m by n linear system of equations. This is enormous overkill for this
+# problem (see "band.x"), but serves to give timing estimates for the code.
+
+
+procedure lsq()
+
+real a[M,N], b[M], tau, rnorm, h[N], g[N]
+int krank, ip[N]
+int i, j, m, n, geti()
+real marktime, cptime()
+
+begin
+ m = min (M, geti ("npts")) # size of matrix
+ n = min (N, m)
+ tau = 1e-6
+
+ do j = 1, n # set up b-spline matrix
+ do i = 1, m
+ a[i,j] = 0.
+
+ a[1,1] = 6. # first row
+ a[1,2] = -12.
+ a[1,3] = 6.
+
+ a[m,n] = 6. # last row
+ a[m,n-1] = -12.
+ a[m,n-2] = 6.
+
+ do j = 2, m-1 { # tridiagonal elements
+ a[j,j-1] = 1.
+ a[j,j] = 4.
+ a[j,j+1] = 1.
+ }
+
+ b[1] = 0. # natural spline bndry conditions
+ b[m] = 0.
+
+ do i = 2, m-1 # set up data vector
+ b[i] = 100.
+
+ marktime = cptime()
+ call hfti (a,M,m,n, b,1,1, tau, krank,rnorm, h,g,ip)
+
+ call printf ("took %8.2f cpu seconds (krank=%d, rnorm=%g)\n")
+ call pargr (cptime() - marktime)
+ call pargi (krank)
+ call pargr (rnorm)
+
+ call printf ("selected coefficients:\n")
+ for (i=1; i <= m;) { # print first, last 4 coeff
+ call printf ("%8d%15.5f\n")
+ call pargi (i)
+ call pargr (b[i])
+ if (i == 4)
+ i = max(i+1, m-3)
+ else
+ i = i + 1
+ }
+end