aboutsummaryrefslogtreecommitdiff
path: root/math/llsq/progs/prog2.f
diff options
context:
space:
mode:
authorJoseph Hunkeler <jhunkeler@gmail.com>2015-07-08 20:46:52 -0400
committerJoseph Hunkeler <jhunkeler@gmail.com>2015-07-08 20:46:52 -0400
commitfa080de7afc95aa1c19a6e6fc0e0708ced2eadc4 (patch)
treebdda434976bc09c864f2e4fa6f16ba1952b1e555 /math/llsq/progs/prog2.f
downloadiraf-linux-fa080de7afc95aa1c19a6e6fc0e0708ced2eadc4.tar.gz
Initial commit
Diffstat (limited to 'math/llsq/progs/prog2.f')
-rw-r--r--math/llsq/progs/prog2.f125
1 files changed, 125 insertions, 0 deletions
diff --git a/math/llsq/progs/prog2.f b/math/llsq/progs/prog2.f
new file mode 100644
index 00000000..5fb601cc
--- /dev/null
+++ b/math/llsq/progs/prog2.f
@@ -0,0 +1,125 @@
+c prog2
+c c.l.lawson and r.j.hanson, jet propulsion laboratory, 1973 jun 12
+c to appear in 'solving least squares problems', prentice-hall, 1974
+c demonstrate algorithm hfti for solving least squares problems
+c and algorithm cov for computing the associated unscaled
+c covariance matrix.
+c
+ dimension a(8,8),h(8),b(8),g(8)
+ real gen,anoise
+ integer ip(8)
+ double precision sm
+ data mda /8/
+c
+ do 180 noise=1,2
+ anorm=500.
+ anoise=0.
+ tau=.5
+ if (noise.eq.1) go to 10
+ anoise=1.e-4
+ tau=anorm*anoise*10.
+ 10 continue
+c initialize the data generation function
+c ..
+ dummy=gen(-1.)
+ write (6,230)
+ write (6,240) anoise,anorm,tau
+c
+ do 180 mn1=1,6,5
+ mn2=mn1+2
+ do 180 m=mn1,mn2
+ do 180 n=mn1,mn2
+ write (6,250) m,n
+c generate data
+c ..
+ do 20 i=1,m
+ do 20 j=1,n
+ 20 a(i,j)=gen(anoise)
+ do 30 i=1,m
+ 30 b(i)=gen(anoise)
+c
+c ****** call hfti ******
+c
+ call hfti(a,mda,m,n,b,1,1,tau,krank,srsmsq,h,g,ip)
+c
+c
+ write (6,260) krank
+ write (6,200) (i,b(i),i=1,n)
+ write (6,190) srsmsq
+ if (krank.lt.n) go to 180
+c ****** algorithm cov bigins here ******
+c ..
+ do 40 j=1,n
+ 40 a(j,j)=1./a(j,j)
+ if (n.eq.1) go to 70
+ nm1=n-1
+ do 60 i=1,nm1
+ ip1=i+1
+ do 60 j=ip1,n
+ jm1=j-1
+ sm=0.d0
+ do 50 l=i,jm1
+ 50 sm=sm+a(i,l)*dble(a(l,j))
+ 60 a(i,j)=-sm*a(j,j)
+c ..
+c the upper triangle of a has been inverted
+c upon itself.
+ 70 do 90 i=1,n
+ do 90 j=i,n
+ sm=0.d0
+ do 80 l=j,n
+ 80 sm=sm+a(i,l)*dble(a(j,l))
+ 90 a(i,j)=sm
+ if (n.lt.2) go to 160
+ do 150 ii=2,n
+ i=n+1-ii
+ if (ip(i).eq.i) go to 150
+ k=ip(i)
+ tmp=a(i,i)
+ a(i,i)=a(k,k)
+ a(k,k)=tmp
+ if (i.eq.1) go to 110
+ do 100 l=2,i
+ tmp=a(l-1,i)
+ a(l-1,i)=a(l-1,k)
+ 100 a(l-1,k)=tmp
+ 110 ip1=i+1
+ km1=k-1
+ if (ip1.gt.km1) go to 130
+ do 120 l=ip1,km1
+ tmp=a(i,l)
+ a(i,l)=a(l,k)
+ 120 a(l,k)=tmp
+ 130 if (k.eq.n) go to 150
+ kp1=k+1
+ do 140 l=kp1,n
+ tmp=a(i,l)
+ a(i,l)=a(k,l)
+ 140 a(k,l)=tmp
+ 150 continue
+ 160 continue
+c ..
+c covariance has been computed and repermuted.
+c the upper triangular part of the
+c symmetric matrix (a**t*a)**(-1) has
+c replaced the upper triangular part of
+c the a array.
+ write (6,210)
+ do 170 i=1,n
+ 170 write (6,220) (i,j,a(i,j),j=i,n)
+ 180 continue
+ stop
+ 190 format (1h0,8x,17hresidual length =,e12.4)
+ 200 format (1h0,8x,34hestimated parameters, x=a**(+)*b,,22h computed
+ 1by 'hfti' //(9x,i6,e16.8,i6,e16.8,i6,e16.8,i6,e16.8,i6,e16.8))
+ 210 format (1h0,8x,31hcovariance matrix (unscaled) of,22h estimated pa
+ 1rameters.,19h computed by 'cov'./1x)
+ 220 format (9x,2i3,e16.8,2i3,e16.8,2i3,e16.8,2i3,e16.8,2i3,e16.8)
+ 230 format (52h1 prog2. this program demonstates the algorithms,16
+ 1h hfti and cov.)
+ 240 format (1h0,54hthe relative noise level of the generated data will
+ 1 be,e16.4/33h0the matrix norm is approximately,e12.4/43h0the absol
+ 2ute pseudorank tolerance, tau, is,e12.4)
+ 250 format (1h0////9h0 m n/1x,2i4)
+ 260 format (1h0,8x,12hpseudorank =,i4)
+ end