aboutsummaryrefslogtreecommitdiff
path: root/math/slalib/doc/planet.hlp
diff options
context:
space:
mode:
authorJoseph Hunkeler <jhunkeler@gmail.com>2015-07-08 20:46:52 -0400
committerJoseph Hunkeler <jhunkeler@gmail.com>2015-07-08 20:46:52 -0400
commitfa080de7afc95aa1c19a6e6fc0e0708ced2eadc4 (patch)
treebdda434976bc09c864f2e4fa6f16ba1952b1e555 /math/slalib/doc/planet.hlp
downloadiraf-linux-fa080de7afc95aa1c19a6e6fc0e0708ced2eadc4.tar.gz
Initial commit
Diffstat (limited to 'math/slalib/doc/planet.hlp')
-rw-r--r--math/slalib/doc/planet.hlp130
1 files changed, 130 insertions, 0 deletions
diff --git a/math/slalib/doc/planet.hlp b/math/slalib/doc/planet.hlp
new file mode 100644
index 00000000..3bdb7b9f
--- /dev/null
+++ b/math/slalib/doc/planet.hlp
@@ -0,0 +1,130 @@
+.help planet Jun99 "Slalib Package"
+.nf
+
+ SUBROUTINE slPLNT (DATE, NP, PV, JSTAT)
+
+ - - - - - - -
+ P L N T
+ - - - - - - -
+
+ Approximate heliocentric position and velocity of a specified
+ major planet.
+
+ Given:
+ DATE d Modified Julian Date (JD - 2400000.5)
+ NP i planet (1=Mercury, 2=Venus, 3=EMB ... 9=Pluto)
+
+ Returned:
+ PV d(6) heliocentric x,y,z,xdot,ydot,zdot, J2000
+ equatorial triad (AU,AU/s)
+ JSTAT i status: +1 = warning: date out of range
+ 0 = OK
+ -1 = illegal NP (outside 1-9)
+ -2 = solution didn't converge
+
+ Called: slPLNE
+
+ Notes
+
+ 1 The epoch, DATE, is in the TDB timescale and is a Modified
+ Julian Date (JD-2400000.5).
+
+ 2 The reference frame is equatorial and is with respect to the
+ mean equinox and ecliptic of epoch J2000.
+
+ 3 If an NP value outside the range 1-9 is supplied, an error
+ status (JSTAT = -1) is returned and the PV vector set to zeroes.
+
+ 4 The algorithm for obtaining the mean elements of the planets
+ from Mercury to Neptune is due to J.L. Simon, P. Bretagnon,
+ J. Chapront, M. Chapront-Touze, G. Francou and J. Laskar
+ (Bureau des Longitudes, Paris). The (completely different)
+ algorithm for calculating the ecliptic coordinates of Pluto
+ is by Meeus.
+
+ 5 Comparisons of the present routine with the JPL DE200 ephemeris
+ give the following RMS errors over the interval 1960-2025:
+
+ position (km) speed (metre/sec)
+
+ Mercury 334 0.437
+ Venus 1060 0.855
+ EMB 2010 0.815
+ Mars 7690 1.98
+ Jupiter 71700 7.70
+ Saturn 199000 19.4
+ Uranus 564000 16.4
+ Neptune 158000 14.4
+ Pluto 36400 0.137
+
+ From comparisons with DE102, Simon et al quote the following
+ longitude accuracies over the interval 1800-2200:
+
+ Mercury 4"
+ Venus 5"
+ EMB 6"
+ Mars 17"
+ Jupiter 71"
+ Saturn 81"
+ Uranus 86"
+ Neptune 11"
+
+ In the case of Pluto, Meeus quotes an accuracy of 0.6 arcsec
+ in longitude and 0.2 arcsec in latitude for the period
+ 1885-2099.
+
+ For all except Pluto, over the period 1000-3000 the accuracy
+ is better than 1.5 times that over 1800-2200. Outside the
+ period 1000-3000 the accuracy declines. For Pluto the
+ accuracy declines rapidly outside the period 1885-2099.
+ Outside these ranges (1885-2099 for Pluto, 1000-3000 for
+ the rest) a "date out of range" warning status (JSTAT=+1)
+ is returned.
+
+ 6 The algorithms for (i) Mercury through Neptune and (ii) Pluto
+ are completely independent. In the Mercury through Neptune
+ case, the present SLALIB implementation differs from the
+ original Simon et al Fortran code in the following respects.
+
+ * The date is supplied as a Modified Julian Date rather
+ than a Julian Date (MJD = JD - 2400000.5).
+
+ * The result is returned only in equatorial Cartesian form;
+ the ecliptic longitude, latitude and radius vector are not
+ returned.
+
+ * The velocity is in AU per second, not AU per day.
+
+ * Different error/warning status values are used.
+
+ * Kepler's equation is not solved inline.
+
+ * Polynomials in T are nested to minimize rounding errors.
+
+ * Explicit double-precision constants are used to avoid
+ mixed-mode expressions.
+
+ * There are other, cosmetic, changes to comply with
+ Starlink/SLALIB style guidelines.
+
+ None of the above changes affects the result significantly.
+
+ 7 For NP=3 the result is for the Earth-Moon Barycentre. To
+ obtain the heliocentric position and velocity of the Earth,
+ either use the SLALIB routine slEVP or call slDMON and
+ subtract 0.012150581 times the geocentric Moon vector from
+ the EMB vector produced by the present routine. (The Moon
+ vector should be precessed to J2000 first, but this can
+ be omitted for modern epochs without introducing significant
+ inaccuracy.)
+
+ References: Simon et al., Astron. Astrophys. 282, 663 (1994).
+ Meeus, Astronomical Algorithms, Willmann-Bell (1991).
+
+ P.T.Wallace Starlink 27 May 1997
+
+ Copyright (C) 1997 Rutherford Appleton Laboratory
+ Copyright (C) 1995 Association of Universities for Research in Astronomy Inc.
+
+.fi
+.endhelp