aboutsummaryrefslogtreecommitdiff
path: root/math/surfit/sf_f1deval.x
diff options
context:
space:
mode:
authorJoseph Hunkeler <jhunkeler@gmail.com>2015-07-08 20:46:52 -0400
committerJoseph Hunkeler <jhunkeler@gmail.com>2015-07-08 20:46:52 -0400
commitfa080de7afc95aa1c19a6e6fc0e0708ced2eadc4 (patch)
treebdda434976bc09c864f2e4fa6f16ba1952b1e555 /math/surfit/sf_f1deval.x
downloadiraf-linux-fa080de7afc95aa1c19a6e6fc0e0708ced2eadc4.tar.gz
Initial commit
Diffstat (limited to 'math/surfit/sf_f1deval.x')
-rw-r--r--math/surfit/sf_f1deval.x233
1 files changed, 233 insertions, 0 deletions
diff --git a/math/surfit/sf_f1deval.x b/math/surfit/sf_f1deval.x
new file mode 100644
index 00000000..01cb98d0
--- /dev/null
+++ b/math/surfit/sf_f1deval.x
@@ -0,0 +1,233 @@
+# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
+
+# CV_EVCHEB -- Procedure to evaluate a Chebyshev polynomial assuming that
+# the coefficients have been calculated.
+
+procedure cv_evcheb (coeff, x, yfit, npts, order, k1, k2)
+
+real coeff[ARB] # EV array of coefficients
+real x[npts] # x values of points to be evaluated
+real yfit[npts] # the fitted points
+int npts # number of points to be evaluated
+int order # order of the polynomial, 1 = constant
+real k1, k2 # normalizing constants
+
+int i
+pointer sx, pn, pnm1, pnm2
+pointer sp
+real c1, c2
+
+begin
+ # fit a constant
+ call amovkr (coeff[1], yfit, npts)
+ if (order == 1)
+ return
+
+ # fit a linear function
+ c1 = k2 * coeff[2]
+ c2 = c1 * k1 + coeff[1]
+ call altmr (x, yfit, npts, c1, c2)
+ if (order == 2)
+ return
+
+ # allocate temporary space
+ call smark (sp)
+ call salloc (sx, npts, TY_REAL)
+ call salloc (pn, npts, TY_REAL)
+ call salloc (pnm1, npts, TY_REAL)
+ call salloc (pnm2, npts, TY_REAL)
+
+ # a higher order polynomial
+ call amovkr (1., Memr[pnm2], npts)
+ call altar (x, Memr[sx], npts, k1, k2)
+ call amovr (Memr[sx], Memr[pnm1], npts)
+ call amulkr (Memr[sx], 2., Memr[sx], npts)
+ do i = 3, order {
+ call amulr (Memr[sx], Memr[pnm1], Memr[pn], npts)
+ call asubr (Memr[pn], Memr[pnm2], Memr[pn], npts)
+ if (i < order) {
+ call amovr (Memr[pnm1], Memr[pnm2], npts)
+ call amovr (Memr[pn], Memr[pnm1], npts)
+ }
+ call amulkr (Memr[pn], coeff[i], Memr[pn], npts)
+ call aaddr (yfit, Memr[pn], yfit, npts)
+ }
+
+ # free temporary space
+ call sfree (sp)
+
+end
+
+
+# CV_EVLEG -- Procedure to evaluate a Legendre polynomial assuming that
+# the coefficients have been calculated.
+
+procedure cv_evleg (coeff, x, yfit, npts, order, k1, k2)
+
+real coeff[ARB] # EV array of coefficients
+real x[npts] # x values of points to be evaluated
+real yfit[npts] # the fitted points
+int npts # number of data points
+int order # order of the polynomial, 1 = constant
+real k1, k2 # normalizing constants
+
+int i
+pointer sx, pn, pnm1, pnm2
+pointer sp
+real ri, ri1, ri2
+
+begin
+ # fit a constant
+ call amovkr (coeff[1], yfit, npts)
+ if (order == 1)
+ return
+
+ # fit a linear function
+ ri1 = k2 * coeff[2]
+ ri2 = ri1 * k1 + coeff[1]
+ call altmr (x, yfit, npts, ri1, ri2)
+ if (order == 2)
+ return
+
+ # allocate temporary space
+ call smark (sp)
+ call salloc (sx, npts, TY_REAL)
+ call salloc (pn, npts, TY_REAL)
+ call salloc (pnm1, npts, TY_REAL)
+ call salloc (pnm2, npts, TY_REAL)
+
+ # a higher order polynomial
+ call amovkr (1., Memr[pnm2], npts)
+ call altar (x, Memr[sx], npts, k1, k2)
+ call amovr (Memr[sx], Memr[pnm1], npts)
+ do i = 3, order {
+ ri = i
+ ri1 = (2. * ri - 3.) / (ri - 1.)
+ ri2 = - (ri - 2.) / (ri - 1.)
+ call amulr (Memr[sx], Memr[pnm1], Memr[pn], npts)
+ call awsur (Memr[pn], Memr[pnm2], Memr[pn], npts, ri1, ri2)
+ if (i < order) {
+ call amovr (Memr[pnm1], Memr[pnm2], npts)
+ call amovr (Memr[pn], Memr[pnm1], npts)
+ }
+ call amulkr (Memr[pn], coeff[i], Memr[pn], npts)
+ call aaddr (yfit, Memr[pn], yfit, npts)
+ }
+
+ # free temporary space
+ call sfree (sp)
+
+end
+
+
+# CV_EVSPLINE1 -- Procedure to evaluate a piecewise linear spline function
+# assuming that the coefficients have been calculated.
+
+procedure cv_evspline1 (coeff, x, yfit, npts, npieces, k1, k2)
+
+real coeff[ARB] # array of coefficients
+real x[npts] # array of x values
+real yfit[npts] # array of fitted values
+int npts # number of data points
+int npieces # number of fitted points minus 1
+real k1, k2 # normalizing constants
+
+int j
+pointer sx, tx, index
+pointer sp
+
+begin
+ # allocate the required space
+ call smark (sp)
+ call salloc (sx, npts, TY_REAL)
+ call salloc (tx, npts, TY_REAL)
+ call salloc (index, npts, TY_INT)
+
+ # calculate the index of the first non-zero coefficient
+ # for each point
+ call altar (x, Memr[sx], npts, k1, k2)
+ call achtri (Memr[sx], Memi[index], npts)
+ call aminki (Memi[index], npieces, Memi[index], npts)
+
+ # transform sx to range 0 to 1
+ do j = 1, npts {
+ Memr[sx+j-1] = Memr[sx+j-1] - Memi[index+j-1]
+ Memr[tx+j-1] = 1. - Memr[sx+j-1]
+ }
+
+ # calculate yfit using the two non-zero basis function
+ call aclrr (yfit, npts)
+ do j = 1, npts
+ yfit[j] = Memr[tx+j-1] * coeff[1+Memi[index+j-1]] +
+ Memr[sx+j-1] * coeff[2+Memi[index+j-1]]
+
+ # free space
+ call sfree (sp)
+
+end
+
+
+# CV_EVSPLINE3 -- Procedure to evaluate the cubic spline assuming that
+# the coefficients of the fit are known.
+
+procedure cv_evspline3 (coeff, x, yfit, npts, npieces, k1, k2)
+
+real coeff[ARB] # array of coeffcients
+real x[npts] # array of x values
+real yfit[npts] # array of fitted values
+int npts # number of data points
+int npieces # number of polynomial pieces
+real k1, k2 # normalizing constants
+
+int i, j
+pointer sx, tx, temp, index, sp
+
+begin
+
+ # allocate the required space
+ call smark (sp)
+ call salloc (sx, npts, TY_REAL)
+ call salloc (tx, npts, TY_REAL)
+ call salloc (temp, npts, TY_REAL)
+ call salloc (index, npts, TY_INT)
+
+ # calculate to which coefficients the x values contribute to
+ call altar (x, Memr[sx], npts, k1, k2)
+ call achtri (Memr[sx], Memi[index], npts)
+ call aminki (Memi[index], npieces, Memi[index], npts)
+
+ # transform sx to range 0 to 1
+ do j = 1, npts {
+ Memr[sx+j-1] = Memr[sx+j-1] - Memi[index+j-1]
+ Memr[tx+j-1] = 1. - Memr[sx+j-1]
+ }
+
+ # calculate yfit using the four non-zero basis function
+ call aclrr (yfit, npts)
+ do i = 1, 4 {
+
+ switch (i) {
+ case 1:
+ call apowkr (Memr[tx], 3, Memr[temp], npts)
+ case 2:
+ do j = 1, npts {
+ Memr[temp+j-1] = 1. + Memr[tx+j-1] * (3. + Memr[tx+j-1] *
+ (3. - 3. * Memr[tx+j-1]))
+ }
+ case 3:
+ do j = 1, npts {
+ Memr[temp+j-1] = 1. + Memr[sx+j-1] * (3. + Memr[sx+j-1] *
+ (3. - 3. * Memr[sx+j-1]))
+ }
+ case 4:
+ call apowkr (Memr[sx], 3, Memr[temp], npts)
+ }
+
+ do j = 1, npts
+ Memr[temp+j-1] = Memr[temp+j-1] * coeff[i+Memi[index+j-1]]
+ call aaddr (yfit, Memr[temp], yfit, npts)
+ }
+
+ # free space
+ call sfree (sp)
+end