diff options
author | Joseph Hunkeler <jhunkeler@gmail.com> | 2015-07-08 20:46:52 -0400 |
---|---|---|
committer | Joseph Hunkeler <jhunkeler@gmail.com> | 2015-07-08 20:46:52 -0400 |
commit | fa080de7afc95aa1c19a6e6fc0e0708ced2eadc4 (patch) | |
tree | bdda434976bc09c864f2e4fa6f16ba1952b1e555 /pkg/obsolete/imcombine/icaclip.gx | |
download | iraf-linux-fa080de7afc95aa1c19a6e6fc0e0708ced2eadc4.tar.gz |
Initial commit
Diffstat (limited to 'pkg/obsolete/imcombine/icaclip.gx')
-rw-r--r-- | pkg/obsolete/imcombine/icaclip.gx | 573 |
1 files changed, 573 insertions, 0 deletions
diff --git a/pkg/obsolete/imcombine/icaclip.gx b/pkg/obsolete/imcombine/icaclip.gx new file mode 100644 index 00000000..677e561c --- /dev/null +++ b/pkg/obsolete/imcombine/icaclip.gx @@ -0,0 +1,573 @@ +# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc. + +include "../icombine.h" + +define MINCLIP 3 # Minimum number of images for this algorithm + +$for (sird) +# IC_AAVSIGCLIP -- Reject pixels using an average sigma about the average +# The average sigma is normalized by the expected poisson sigma. + +procedure ic_aavsigclip$t (d, m, n, scales, zeros, nimages, npts, average) + +pointer d[nimages] # Data pointers +pointer m[nimages] # Image id pointers +int n[npts] # Number of good pixels +real scales[nimages] # Scales +real zeros[nimages] # Zeros +int nimages # Number of images +int npts # Number of output points per line +$if (datatype == sil) +real average[npts] # Average +$else +PIXEL average[npts] # Average +$endif + +int i, j, k, l, jj, n1, n2, nin, nk, maxkeep +$if (datatype == sil) +real d1, low, high, sum, a, s, s1, r, one +data one /1.0/ +$else +PIXEL d1, low, high, sum, a, s, s1, r, one +data one /1$f/ +$endif +pointer sp, sums, resid, dp1, dp2, mp1, mp2 + +include "../icombine.com" + +begin + # If there are insufficient pixels go on to the combining. + if (nkeep < 0) + maxkeep = max (0, nimages + nkeep) + else + maxkeep = min (nimages, nkeep) + if (nimages < max (MINCLIP, maxkeep+1) || dflag == D_NONE) { + docombine = true + return + } + + call smark (sp) + call salloc (sums, npts, TY_REAL) + call salloc (resid, nimages+1, TY_REAL) + + # Since the unweighted average is computed here possibly skip combining + if (dowts || combine != AVERAGE) + docombine = true + else + docombine = false + + # Compute the unweighted average with the high and low rejected and + # the poisson scaled average sigma. There must be at least three + # pixels at each point to define the average and contributions to + # the mean sigma. Corrections for differences in the image + # scale factors are selected by the doscale1 flag. + + nin = n[1] + s = 0. + n2 = 0 + do i = 1, npts { + k = i - 1 + n1 = n[i] + if (n1 < 3) + next + + # Unweighted average with the high and low rejected + low = Mem$t[d[1]+k] + high = Mem$t[d[2]+k] + if (low > high) { + d1 = low + low = high + high = d1 + } + sum = 0. + do j = 3, n1 { + d1 = Mem$t[d[j]+k] + if (d1 < low) { + sum = sum + low + low = d1 + } else if (d1 > high) { + sum = sum + high + high = d1 + } else + sum = sum + d1 + } + a = sum / (n1 - 2) + sum = sum + low + high + + # Poisson scaled sigma accumulation + if (doscale1) { + do j = 1, n1 { + dp1 = d[j] + k + mp1 = m[j] + k + + d1 = Mem$t[dp1] + l = Memi[mp1] + s1 = max (one, (a + zeros[l]) / scales[l]) + s = s + (d1 - a) ** 2 / s1 + } + } else { + s1 = max (one, a) + do j = 1, n1 + s = s + (Mem$t[d[j]+k] - a) ** 2 / s1 + } + n2 = n2 + n1 + + # Save the average and sum for later. + average[i] = a + Memr[sums+k] = sum + } + + # Here is the final sigma. + if (n2 > 1) + s = sqrt (s / (n2 - 1)) + + # Reject pixels and compute the final average (if needed). + # There must be at least three pixels at each point for rejection. + # Iteratively scale the mean sigma and reject pixels + # Compact the data and keep track of the image IDs if needed. + + do i = 1, npts { + k = i - 1 + n1 = n[i] + if (nkeep < 0) + maxkeep = max (0, n1 + nkeep) + else + maxkeep = min (n1, nkeep) + if (n1 <= max (2, maxkeep)) { + if (!docombine) { + if (n1 == 0) + average[i] = blank + else { + sum = Mem$t[d[1]+k] + do j = 2, n1 + sum = sum + Mem$t[d[j]+k] + average[i] = sum / n1 + } + } + next + } + + a = average[i] + sum = Memr[sums+k] + + repeat { + n2 = n1 + if (s > 0.) { + if (doscale1) { + for (j=1; j<=n1; j=j+1) { + dp1 = d[j] + k + mp1 = m[j] + k + + d1 = Mem$t[dp1] + l = Memi[mp1] + s1 = s * sqrt (max (one, (a+zeros[l]) / scales[l])) + r = (d1 - a) / s1 + if (r < -lsigma || r > hsigma) { + Memr[resid+n1] = abs(r) + if (j < n1) { + dp2 = d[n1] + k + Mem$t[dp1] = Mem$t[dp2] + Mem$t[dp2] = d1 + mp2 = m[n1] + k + Memi[mp1] = Memi[mp2] + Memi[mp2] = l + j = j - 1 + } + sum = sum - d1 + n1 = n1 - 1 + } + } + } else { + s1 = s * sqrt (max (one, a)) + for (j=1; j<=n1; j=j+1) { + dp1 = d[j] + k + d1 = Mem$t[dp1] + r = (d1 - a) / s1 + if (r < -lsigma || r > hsigma) { + Memr[resid+n1] = abs(r) + if (j < n1) { + dp2 = d[n1] + k + Mem$t[dp1] = Mem$t[dp2] + Mem$t[dp2] = d1 + if (keepids) { + mp1 = m[j] + k + mp2 = m[n1] + k + l = Memi[mp1] + Memi[mp1] = Memi[mp2] + Memi[mp2] = l + } + j = j - 1 + } + sum = sum - d1 + n1 = n1 - 1 + } + } + } + } + if (n1 > 1) + a = sum / n1 + } until (n1 == n2 || n1 <= max (2, maxkeep)) + + # If too many are rejected add some back in. + # Pixels with equal residuals are added together. + if (n1 < maxkeep) { + nk = maxkeep + if (doscale1) { + for (j=n1+1; j<=nk; j=j+1) { + dp1 = d[j] + k + mp1 = m[j] + k + r = Memr[resid+j] + jj = 0 + do l = j+1, n2 { + s = Memr[resid+l] + if (s < r + TOL) { + if (s > r - TOL) + jj = jj + 1 + else { + jj = 0 + Memr[resid+l] = r + r = s + dp2 = d[l] + k + d1 = Mem$t[dp1] + Mem$t[dp1] = Mem$t[dp2] + Mem$t[dp2] = d1 + mp2 = m[l] + k + s = Memi[mp1] + Memi[mp1] = Memi[mp2] + Memi[mp2] = s + } + } + } + sum = sum + Mem$t[dp1] + n1 = n1 + 1 + nk = max (nk, j+jj) + } + } else { + for (j=n1+1; j<=nk; j=j+1) { + dp1 = d[j] + k + r = Memr[resid+j] + jj = 0 + do l = j+1, n2 { + s = Memr[resid+l] + if (s < r + TOL) { + if (s > r - TOL) + jj = jj + 1 + else { + jj = 0 + Memr[resid+l] = r + r = s + dp2 = d[l] + k + d1 = Mem$t[dp1] + Mem$t[dp1] = Mem$t[dp2] + Mem$t[dp2] = d1 + if (keepids) { + mp1 = m[j] + k + mp2 = m[l] + k + s = Memi[mp1] + Memi[mp1] = Memi[mp2] + Memi[mp2] = s + } + } + } + } + sum = sum + Mem$t[dp1] + n1 = n1 + 1 + nk = max (nk, j+jj) + } + } + if (n1 > 1) + a = sum / n1 + } + + # Save the average if needed. + n[i] = n1 + if (!docombine) { + if (n1 > 0) + average[i] = a + else + average[i] = blank + } + } + + # Check if the data flag has to be reset for rejected pixels + if (dflag == D_ALL) { + do i = 1, npts { + if (n[i] != nin) { + dflag = D_MIX + break + } + } + } + + call sfree (sp) +end + + +# IC_MAVSIGCLIP -- Reject pixels using an average sigma about the median +# The average sigma is normalized by the expected poisson sigma. + +procedure ic_mavsigclip$t (d, m, n, scales, zeros, nimages, npts, median) + +pointer d[nimages] # Data pointers +pointer m[nimages] # Image id pointers +int n[npts] # Number of good pixels +real scales[nimages] # Scales +real zeros[nimages] # Zeros +int nimages # Number of images +int npts # Number of output points per line +$if (datatype == sil) +real median[npts] # Median +$else +PIXEL median[npts] # Median +$endif + +int i, j, k, l, id, n1, n2, n3, nl, nh, nin, maxkeep +pointer sp, resid, mp1, mp2 +$if (datatype == sil) +real med, low, high, r, s, s1, one +data one /1.0/ +$else +PIXEL med, low, high, r, s, s1, one +data one /1$f/ +$endif + +include "../icombine.com" + +begin + # If there are insufficient pixels go on to the combining. + if (nkeep < 0) + maxkeep = max (0, nimages + nkeep) + else + maxkeep = min (nimages, nkeep) + if (nimages < max (MINCLIP, maxkeep+1) || dflag == D_NONE) { + docombine = true + return + } + + call smark (sp) + call salloc (resid, nimages+1, TY_REAL) + + # Compute the poisson scaled average sigma about the median. + # There must be at least three pixels at each point to define + # the mean sigma. Corrections for differences in the image + # scale factors are selected by the doscale1 flag. + + s = 0. + n2 = 0 + nin = n[1] + do i = 1, npts { + k = i - 1 + n1 = n[i] + if (n1 < 3) { + if (n1 == 0) + median[i] = blank + else if (n1 == 1) + median[i] = Mem$t[d[1]+k] + else { + low = Mem$t[d[1]+k] + high = Mem$t[d[2]+k] + median[i] = (low + high) / 2. + } + next + } + + # Median + n3 = 1 + n1 / 2 + if (mod (n1, 2) == 0) { + low = Mem$t[d[n3-1]+k] + high = Mem$t[d[n3]+k] + med = (low + high) / 2. + } else + med = Mem$t[d[n3]+k] + + # Poisson scaled sigma accumulation + if (doscale1) { + do j = 1, n1 { + l = Memi[m[j]+k] + s1 = max (one, (med + zeros[l]) / scales[l]) + s = s + (Mem$t[d[j]+k] - med) ** 2 / s1 + } + } else { + s1 = max (one, med) + do j = 1, n1 + s = s + (Mem$t[d[j]+k] - med) ** 2 / s1 + } + n2 = n2 + n1 + + # Save the median for later. + median[i] = med + } + + # Here is the final sigma. + if (n2 > 1) + s = sqrt (s / (n2 - 1)) + else + return + + # Compute individual sigmas and iteratively clip. + do i = 1, npts { + k = i - 1 + n1 = n[i] + if (nkeep < 0) + maxkeep = max (0, n1 + nkeep) + else + maxkeep = min (n1, nkeep) + if (n1 < max (3, maxkeep+1)) + next + nl = 1 + nh = n1 + med = median[i] + + repeat { + n2 = n1 + n3 = nl + n1 / 2 + + if (n1 >= max (MINCLIP, maxkeep+1) && s > 0.) { + if (doscale1) { + for (; nl <= n2; nl = nl + 1) { + l = Memi[m[nl]+k] + s1 = s * sqrt (max (one, (med+zeros[l])/scales[l])) + r = (med - Mem$t[d[nl]+k]) / s1 + if (r <= lsigma) + break + Memr[resid+nl] = r + n1 = n1 - 1 + } + for (; nh >= nl; nh = nh - 1) { + l = Memi[m[nh]+k] + s1 = s * sqrt (max (one, (med+zeros[l])/scales[l])) + r = (Mem$t[d[nh]+k] - med) / s1 + if (r <= hsigma) + break + Memr[resid+nh] = r + n1 = n1 - 1 + } + } else { + s1 = s * sqrt (max (one, med)) + for (; nl <= n2; nl = nl + 1) { + r = (med - Mem$t[d[nl]+k]) / s1 + if (r <= lsigma) + break + Memr[resid+nl] = r + n1 = n1 - 1 + } + for (; nh >= nl; nh = nh - 1) { + r = (Mem$t[d[nh]+k] - med) / s1 + if (r <= hsigma) + break + Memr[resid+nh] = r + n1 = n1 - 1 + } + } + + # Recompute median + if (n1 < n2) { + if (n1 > 0) { + n3 = nl + n1 / 2 + if (mod (n1, 2) == 0) { + low = Mem$t[d[n3-1]+k] + high = Mem$t[d[n3]+k] + med = (low + high) / 2. + } else + med = Mem$t[d[n3]+k] + } else + med = blank + } + } + } until (n1 == n2 || n1 < max (MINCLIP, maxkeep+1)) + + # If too many are rejected add some back in. + # Pixels with equal residuals are added together. + while (n1 < maxkeep) { + if (nl == 1) + nh = nh + 1 + else if (nh == n[i]) + nl = nl - 1 + else { + r = Memr[resid+nl-1] + s = Memr[resid+nh+1] + if (r < s) { + nl = nl - 1 + r = r + TOL + if (s <= r) + nh = nh + 1 + if (nl > 1) { + if (Memr[resid+nl-1] <= r) + nl = nl - 1 + } + } else { + nh = nh + 1 + s = s + TOL + if (r <= s) + nl = nl - 1 + if (nh < n2) { + if (Memr[resid+nh+1] <= s) + nh = nh + 1 + } + } + } + n1 = nh - nl + 1 + + # Recompute median + if (n1 < n2) { + if (n1 > 0) { + n3 = nl + n1 / 2 + if (mod (n1, 2) == 0) { + low = Mem$t[d[n3-1]+k] + high = Mem$t[d[n3]+k] + med = (low + high) / 2. + } else + med = Mem$t[d[n3]+k] + } else + med = blank + } + } + + # Only set median and reorder if needed + n[i] = n1 + if (n1 > 0 && nl > 1 && (combine != MEDIAN || grow >= 1.)) { + j = max (nl, n1 + 1) + if (keepids) { + do l = 1, min (n1, nl-1) { + Mem$t[d[l]+k] = Mem$t[d[j]+k] + if (grow >= 1.) { + mp1 = m[l] + k + mp2 = m[j] + k + id = Memi[mp1] + Memi[mp1] = Memi[mp2] + Memi[mp2] = id + } else + Memi[m[l]+k] = Memi[m[j]+k] + j = j + 1 + } + } else { + do l = 1, min (n1, nl - 1) { + Mem$t[d[l]+k] = Mem$t[d[j]+k] + j = j + 1 + } + } + } + + if (combine == MEDIAN) + median[i] = med + } + + # Check if data flag needs to be reset for rejected pixels + if (dflag == D_ALL) { + do i = 1, npts { + if (n[i] != nin) { + dflag = D_MIX + break + } + } + } + + # Flag that the median is computed. + if (combine == MEDIAN) + docombine = false + else + docombine = true + + call sfree (sp) +end +$endfor |