aboutsummaryrefslogtreecommitdiff
path: root/vendor/cfitsio/wcsutil.c
diff options
context:
space:
mode:
authorJoseph Hunkeler <jhunkeler@gmail.com>2015-07-08 20:46:52 -0400
committerJoseph Hunkeler <jhunkeler@gmail.com>2015-07-08 20:46:52 -0400
commitfa080de7afc95aa1c19a6e6fc0e0708ced2eadc4 (patch)
treebdda434976bc09c864f2e4fa6f16ba1952b1e555 /vendor/cfitsio/wcsutil.c
downloadiraf-linux-fa080de7afc95aa1c19a6e6fc0e0708ced2eadc4.tar.gz
Initial commit
Diffstat (limited to 'vendor/cfitsio/wcsutil.c')
-rw-r--r--vendor/cfitsio/wcsutil.c503
1 files changed, 503 insertions, 0 deletions
diff --git a/vendor/cfitsio/wcsutil.c b/vendor/cfitsio/wcsutil.c
new file mode 100644
index 00000000..394a0f04
--- /dev/null
+++ b/vendor/cfitsio/wcsutil.c
@@ -0,0 +1,503 @@
+#include <math.h>
+#include "fitsio2.h"
+#define D2R 0.01745329252
+#define TWOPI 6.28318530717959
+
+/*--------------------------------------------------------------------------*/
+int ffwldp(double xpix, double ypix, double xref, double yref,
+ double xrefpix, double yrefpix, double xinc, double yinc, double rot,
+ char *type, double *xpos, double *ypos, int *status)
+
+/* This routine is based on the classic AIPS WCS routine.
+
+ It converts from pixel location to RA,Dec for 9 projective geometries:
+ "-CAR", "-SIN", "-TAN", "-ARC", "-NCP", "-GLS", "-MER", "-AIT" and "-STG".
+*/
+
+/*-----------------------------------------------------------------------*/
+/* routine to determine accurate position for pixel coordinates */
+/* returns 0 if successful otherwise: */
+/* 501 = angle too large for projection; */
+/* does: -CAR, -SIN, -TAN, -ARC, -NCP, -GLS, -MER, -AIT -STG projections*/
+/* Input: */
+/* f xpix x pixel number (RA or long without rotation) */
+/* f ypiy y pixel number (dec or lat without rotation) */
+/* d xref x reference coordinate value (deg) */
+/* d yref y reference coordinate value (deg) */
+/* f xrefpix x reference pixel */
+/* f yrefpix y reference pixel */
+/* f xinc x coordinate increment (deg) */
+/* f yinc y coordinate increment (deg) */
+/* f rot rotation (deg) (from N through E) */
+/* c *type projection type code e.g. "-SIN"; */
+/* Output: */
+/* d *xpos x (RA) coordinate (deg) */
+/* d *ypos y (dec) coordinate (deg) */
+/*-----------------------------------------------------------------------*/
+ {double cosr, sinr, dx, dy, dz, temp, x, y, z;
+ double sins, coss, dect, rat, dt, l, m, mg, da, dd, cos0, sin0;
+ double dec0, ra0;
+ double geo1, geo2, geo3;
+ double deps = 1.0e-5;
+ char *cptr;
+
+ if (*status > 0)
+ return(*status);
+
+/* Offset from ref pixel */
+ dx = (xpix-xrefpix) * xinc;
+ dy = (ypix-yrefpix) * yinc;
+
+/* Take out rotation */
+ cosr = cos(rot * D2R);
+ sinr = sin(rot * D2R);
+ if (rot != 0.0) {
+ temp = dx * cosr - dy * sinr;
+ dy = dy * cosr + dx * sinr;
+ dx = temp;
+ }
+
+/* convert to radians */
+ ra0 = xref * D2R;
+ dec0 = yref * D2R;
+
+ l = dx * D2R;
+ m = dy * D2R;
+ sins = l*l + m*m;
+ cos0 = cos(dec0);
+ sin0 = sin(dec0);
+
+ if (*type != '-') { /* unrecognized projection code */
+ return(*status = 504);
+ }
+
+ cptr = type + 1;
+
+ if (*cptr == 'C') { /* linear -CAR */
+ if (*(cptr + 1) != 'A' || *(cptr + 2) != 'R') {
+ return(*status = 504);
+ }
+ rat = ra0 + l;
+ dect = dec0 + m;
+
+ } else if (*cptr == 'T') { /* -TAN */
+ if ( !(*(cptr + 1) == 'A' && *(cptr + 2) == 'N') &&
+ !(*(cptr + 1) == 'P' && *(cptr + 2) == 'V') ) {
+ return(*status = 504);
+ }
+ x = cos0*cos(ra0) - l*sin(ra0) - m*cos(ra0)*sin0;
+ y = cos0*sin(ra0) + l*cos(ra0) - m*sin(ra0)*sin0;
+ z = sin0 + m* cos0;
+ rat = atan2( y, x );
+ dect = atan ( z / sqrt(x*x+y*y) );
+
+ } else if (*cptr == 'S') {
+
+ if (*(cptr + 1) == 'I' && *(cptr + 2) == 'N') { /* -SIN */
+ if (sins>1.0)
+ return(*status = 501);
+ coss = sqrt (1.0 - sins);
+ dt = sin0 * coss + cos0 * m;
+ if ((dt>1.0) || (dt<-1.0))
+ return(*status = 501);
+ dect = asin (dt);
+ rat = cos0 * coss - sin0 * m;
+ if ((rat==0.0) && (l==0.0))
+ return(*status = 501);
+ rat = atan2 (l, rat) + ra0;
+
+ } else if (*(cptr + 1) == 'T' && *(cptr + 2) == 'G') { /* -STG Sterographic*/
+ dz = (4.0 - sins) / (4.0 + sins);
+ if (fabs(dz)>1.0)
+ return(*status = 501);
+ dect = dz * sin0 + m * cos0 * (1.0+dz) / 2.0;
+ if (fabs(dect)>1.0)
+ return(*status = 501);
+ dect = asin (dect);
+ rat = cos(dect);
+ if (fabs(rat)<deps)
+ return(*status = 501);
+ rat = l * (1.0+dz) / (2.0 * rat);
+ if (fabs(rat)>1.0)
+ return(*status = 501);
+ rat = asin (rat);
+ mg = 1.0 + sin(dect) * sin0 + cos(dect) * cos0 * cos(rat);
+ if (fabs(mg)<deps)
+ return(*status = 501);
+ mg = 2.0 * (sin(dect) * cos0 - cos(dect) * sin0 * cos(rat)) / mg;
+ if (fabs(mg-m)>deps)
+ rat = TWOPI /2.0 - rat;
+ rat = ra0 + rat;
+ } else {
+ return(*status = 504);
+ }
+
+ } else if (*cptr == 'A') {
+
+ if (*(cptr + 1) == 'R' && *(cptr + 2) == 'C') { /* ARC */
+ if (sins>=TWOPI*TWOPI/4.0)
+ return(*status = 501);
+ sins = sqrt(sins);
+ coss = cos (sins);
+ if (sins!=0.0)
+ sins = sin (sins) / sins;
+ else
+ sins = 1.0;
+ dt = m * cos0 * sins + sin0 * coss;
+ if ((dt>1.0) || (dt<-1.0))
+ return(*status = 501);
+ dect = asin (dt);
+ da = coss - dt * sin0;
+ dt = l * sins * cos0;
+ if ((da==0.0) && (dt==0.0))
+ return(*status = 501);
+ rat = ra0 + atan2 (dt, da);
+
+ } else if (*(cptr + 1) == 'I' && *(cptr + 2) == 'T') { /* -AIT Aitoff */
+ dt = yinc*cosr + xinc*sinr;
+ if (dt==0.0)
+ dt = 1.0;
+ dt = dt * D2R;
+ dy = yref * D2R;
+ dx = sin(dy+dt)/sqrt((1.0+cos(dy+dt))/2.0) -
+ sin(dy)/sqrt((1.0+cos(dy))/2.0);
+ if (dx==0.0)
+ dx = 1.0;
+ geo2 = dt / dx;
+ dt = xinc*cosr - yinc* sinr;
+ if (dt==0.0)
+ dt = 1.0;
+ dt = dt * D2R;
+ dx = 2.0 * cos(dy) * sin(dt/2.0);
+ if (dx==0.0) dx = 1.0;
+ geo1 = dt * sqrt((1.0+cos(dy)*cos(dt/2.0))/2.0) / dx;
+ geo3 = geo2 * sin(dy) / sqrt((1.0+cos(dy))/2.0);
+ rat = ra0;
+ dect = dec0;
+ if ((l != 0.0) || (m != 0.0)) {
+ dz = 4.0 - l*l/(4.0*geo1*geo1) - ((m+geo3)/geo2)*((m+geo3)/geo2) ;
+ if ((dz>4.0) || (dz<2.0)) return(*status = 501);
+ dz = 0.5 * sqrt (dz);
+ dd = (m+geo3) * dz / geo2;
+ if (fabs(dd)>1.0) return(*status = 501);
+ dd = asin (dd);
+ if (fabs(cos(dd))<deps) return(*status = 501);
+ da = l * dz / (2.0 * geo1 * cos(dd));
+ if (fabs(da)>1.0) return(*status = 501);
+ da = asin (da);
+ rat = ra0 + 2.0 * da;
+ dect = dd;
+ }
+ } else {
+ return(*status = 504);
+ }
+
+ } else if (*cptr == 'N') { /* -NCP North celestial pole*/
+ if (*(cptr + 1) != 'C' || *(cptr + 2) != 'P') {
+ return(*status = 504);
+ }
+ dect = cos0 - m * sin0;
+ if (dect==0.0)
+ return(*status = 501);
+ rat = ra0 + atan2 (l, dect);
+ dt = cos (rat-ra0);
+ if (dt==0.0)
+ return(*status = 501);
+ dect = dect / dt;
+ if ((dect>1.0) || (dect<-1.0))
+ return(*status = 501);
+ dect = acos (dect);
+ if (dec0<0.0) dect = -dect;
+
+ } else if (*cptr == 'G') { /* -GLS global sinusoid */
+ if (*(cptr + 1) != 'L' || *(cptr + 2) != 'S') {
+ return(*status = 504);
+ }
+ dect = dec0 + m;
+ if (fabs(dect)>TWOPI/4.0)
+ return(*status = 501);
+ coss = cos (dect);
+ if (fabs(l)>TWOPI*coss/2.0)
+ return(*status = 501);
+ rat = ra0;
+ if (coss>deps) rat = rat + l / coss;
+
+ } else if (*cptr == 'M') { /* -MER mercator*/
+ if (*(cptr + 1) != 'E' || *(cptr + 2) != 'R') {
+ return(*status = 504);
+ }
+ dt = yinc * cosr + xinc * sinr;
+ if (dt==0.0) dt = 1.0;
+ dy = (yref/2.0 + 45.0) * D2R;
+ dx = dy + dt / 2.0 * D2R;
+ dy = log (tan (dy));
+ dx = log (tan (dx));
+ geo2 = dt * D2R / (dx - dy);
+ geo3 = geo2 * dy;
+ geo1 = cos (yref*D2R);
+ if (geo1<=0.0) geo1 = 1.0;
+ rat = l / geo1 + ra0;
+ if (fabs(rat - ra0) > TWOPI)
+ return(*status = 501);
+ dt = 0.0;
+ if (geo2!=0.0) dt = (m + geo3) / geo2;
+ dt = exp (dt);
+ dect = 2.0 * atan (dt) - TWOPI / 4.0;
+
+ } else {
+ return(*status = 504);
+ }
+
+ /* correct for RA rollover */
+ if (rat-ra0>TWOPI/2.0) rat = rat - TWOPI;
+ if (rat-ra0<-TWOPI/2.0) rat = rat + TWOPI;
+ if (rat < 0.0) rat += TWOPI;
+
+ /* convert to degrees */
+ *xpos = rat / D2R;
+ *ypos = dect / D2R;
+ return(*status);
+}
+/*--------------------------------------------------------------------------*/
+int ffxypx(double xpos, double ypos, double xref, double yref,
+ double xrefpix, double yrefpix, double xinc, double yinc, double rot,
+ char *type, double *xpix, double *ypix, int *status)
+
+/* This routine is based on the classic AIPS WCS routine.
+
+ It converts from RA,Dec to pixel location to for 9 projective geometries:
+ "-CAR", "-SIN", "-TAN", "-ARC", "-NCP", "-GLS", "-MER", "-AIT" and "-STG".
+*/
+/*-----------------------------------------------------------------------*/
+/* routine to determine accurate pixel coordinates for an RA and Dec */
+/* returns 0 if successful otherwise: */
+/* 501 = angle too large for projection; */
+/* 502 = bad values */
+/* does: -SIN, -TAN, -ARC, -NCP, -GLS, -MER, -AIT projections */
+/* anything else is linear */
+/* Input: */
+/* d xpos x (RA) coordinate (deg) */
+/* d ypos y (dec) coordinate (deg) */
+/* d xref x reference coordinate value (deg) */
+/* d yref y reference coordinate value (deg) */
+/* f xrefpix x reference pixel */
+/* f yrefpix y reference pixel */
+/* f xinc x coordinate increment (deg) */
+/* f yinc y coordinate increment (deg) */
+/* f rot rotation (deg) (from N through E) */
+/* c *type projection type code e.g. "-SIN"; */
+/* Output: */
+/* f *xpix x pixel number (RA or long without rotation) */
+/* f *ypiy y pixel number (dec or lat without rotation) */
+/*-----------------------------------------------------------------------*/
+ {
+ double dx, dy, dz, r, ra0, dec0, ra, dec, coss, sins, dt, da, dd, sint;
+ double l, m, geo1, geo2, geo3, sinr, cosr, cos0, sin0;
+ double deps=1.0e-5;
+ char *cptr;
+
+ if (*type != '-') { /* unrecognized projection code */
+ return(*status = 504);
+ }
+
+ cptr = type + 1;
+
+ dt = (xpos - xref);
+ if (dt > 180) xpos -= 360;
+ if (dt < -180) xpos += 360;
+ /* NOTE: changing input argument xpos is OK (call-by-value in C!) */
+
+ /* default values - linear */
+ dx = xpos - xref;
+ dy = ypos - yref;
+
+ /* Correct for rotation */
+ r = rot * D2R;
+ cosr = cos (r);
+ sinr = sin (r);
+ dz = dx*cosr + dy*sinr;
+ dy = dy*cosr - dx*sinr;
+ dx = dz;
+
+ /* check axis increments - bail out if either 0 */
+ if ((xinc==0.0) || (yinc==0.0)) {*xpix=0.0; *ypix=0.0;
+ return(*status = 502);}
+
+ /* convert to pixels */
+ *xpix = dx / xinc + xrefpix;
+ *ypix = dy / yinc + yrefpix;
+
+ if (*cptr == 'C') { /* linear -CAR */
+ if (*(cptr + 1) != 'A' || *(cptr + 2) != 'R') {
+ return(*status = 504);
+ }
+
+ return(*status); /* done if linear */
+ }
+
+ /* Non linear position */
+ ra0 = xref * D2R;
+ dec0 = yref * D2R;
+ ra = xpos * D2R;
+ dec = ypos * D2R;
+
+ /* compute direction cosine */
+ coss = cos (dec);
+ sins = sin (dec);
+ cos0 = cos (dec0);
+ sin0 = sin (dec0);
+ l = sin(ra-ra0) * coss;
+ sint = sins * sin0 + coss * cos0 * cos(ra-ra0);
+
+ /* process by case */
+ if (*cptr == 'T') { /* -TAN tan */
+ if (*(cptr + 1) != 'A' || *(cptr + 2) != 'N') {
+ return(*status = 504);
+ }
+
+ if (sint<=0.0)
+ return(*status = 501);
+ if( cos0<0.001 ) {
+ /* Do a first order expansion around pole */
+ m = (coss * cos(ra-ra0)) / (sins * sin0);
+ m = (-m + cos0 * (1.0 + m*m)) / sin0;
+ } else {
+ m = ( sins/sint - sin0 ) / cos0;
+ }
+ if( fabs(sin(ra0)) < 0.3 ) {
+ l = coss*sin(ra)/sint - cos0*sin(ra0) + m*sin(ra0)*sin0;
+ l /= cos(ra0);
+ } else {
+ l = coss*cos(ra)/sint - cos0*cos(ra0) + m*cos(ra0)*sin0;
+ l /= -sin(ra0);
+ }
+
+ } else if (*cptr == 'S') {
+
+ if (*(cptr + 1) == 'I' && *(cptr + 2) == 'N') { /* -SIN */
+ if (sint<0.0)
+ return(*status = 501);
+ m = sins * cos(dec0) - coss * sin(dec0) * cos(ra-ra0);
+
+ } else if (*(cptr + 1) == 'T' && *(cptr + 2) == 'G') { /* -STG Sterographic*/
+ da = ra - ra0;
+ if (fabs(dec)>TWOPI/4.0)
+ return(*status = 501);
+ dd = 1.0 + sins * sin(dec0) + coss * cos(dec0) * cos(da);
+ if (fabs(dd)<deps)
+ return(*status = 501);
+ dd = 2.0 / dd;
+ l = l * dd;
+ m = dd * (sins * cos(dec0) - coss * sin(dec0) * cos(da));
+
+ } else {
+ return(*status = 504);
+ }
+
+ } else if (*cptr == 'A') {
+
+ if (*(cptr + 1) == 'R' && *(cptr + 2) == 'C') { /* ARC */
+ m = sins * sin(dec0) + coss * cos(dec0) * cos(ra-ra0);
+ if (m<-1.0) m = -1.0;
+ if (m>1.0) m = 1.0;
+ m = acos (m);
+ if (m!=0)
+ m = m / sin(m);
+ else
+ m = 1.0;
+ l = l * m;
+ m = (sins * cos(dec0) - coss * sin(dec0) * cos(ra-ra0)) * m;
+
+ } else if (*(cptr + 1) == 'I' && *(cptr + 2) == 'T') { /* -AIT Aitoff */
+ da = (ra - ra0) / 2.0;
+ if (fabs(da)>TWOPI/4.0)
+ return(*status = 501);
+ dt = yinc*cosr + xinc*sinr;
+ if (dt==0.0) dt = 1.0;
+ dt = dt * D2R;
+ dy = yref * D2R;
+ dx = sin(dy+dt)/sqrt((1.0+cos(dy+dt))/2.0) -
+ sin(dy)/sqrt((1.0+cos(dy))/2.0);
+ if (dx==0.0) dx = 1.0;
+ geo2 = dt / dx;
+ dt = xinc*cosr - yinc* sinr;
+ if (dt==0.0) dt = 1.0;
+ dt = dt * D2R;
+ dx = 2.0 * cos(dy) * sin(dt/2.0);
+ if (dx==0.0) dx = 1.0;
+ geo1 = dt * sqrt((1.0+cos(dy)*cos(dt/2.0))/2.0) / dx;
+ geo3 = geo2 * sin(dy) / sqrt((1.0+cos(dy))/2.0);
+ dt = sqrt ((1.0 + cos(dec) * cos(da))/2.0);
+ if (fabs(dt)<deps)
+ return(*status = 503);
+ l = 2.0 * geo1 * cos(dec) * sin(da) / dt;
+ m = geo2 * sin(dec) / dt - geo3;
+
+ } else {
+ return(*status = 504);
+ }
+
+ } else if (*cptr == 'N') { /* -NCP North celestial pole*/
+ if (*(cptr + 1) != 'C' || *(cptr + 2) != 'P') {
+ return(*status = 504);
+ }
+
+ if (dec0==0.0)
+ return(*status = 501); /* can't stand the equator */
+ else
+ m = (cos(dec0) - coss * cos(ra-ra0)) / sin(dec0);
+
+ } else if (*cptr == 'G') { /* -GLS global sinusoid */
+ if (*(cptr + 1) != 'L' || *(cptr + 2) != 'S') {
+ return(*status = 504);
+ }
+
+ dt = ra - ra0;
+ if (fabs(dec)>TWOPI/4.0)
+ return(*status = 501);
+ if (fabs(dec0)>TWOPI/4.0)
+ return(*status = 501);
+ m = dec - dec0;
+ l = dt * coss;
+
+ } else if (*cptr == 'M') { /* -MER mercator*/
+ if (*(cptr + 1) != 'E' || *(cptr + 2) != 'R') {
+ return(*status = 504);
+ }
+
+ dt = yinc * cosr + xinc * sinr;
+ if (dt==0.0) dt = 1.0;
+ dy = (yref/2.0 + 45.0) * D2R;
+ dx = dy + dt / 2.0 * D2R;
+ dy = log (tan (dy));
+ dx = log (tan (dx));
+ geo2 = dt * D2R / (dx - dy);
+ geo3 = geo2 * dy;
+ geo1 = cos (yref*D2R);
+ if (geo1<=0.0) geo1 = 1.0;
+ dt = ra - ra0;
+ l = geo1 * dt;
+ dt = dec / 2.0 + TWOPI / 8.0;
+ dt = tan (dt);
+ if (dt<deps)
+ return(*status = 502);
+ m = geo2 * log (dt) - geo3;
+
+ } else {
+ return(*status = 504);
+ }
+
+ /* convert to degrees */
+ dx = l / D2R;
+ dy = m / D2R;
+
+ /* Correct for rotation */
+ dz = dx*cosr + dy*sinr;
+ dy = dy*cosr - dx*sinr;
+ dx = dz;
+
+ /* convert to pixels */
+ *xpix = dx / xinc + xrefpix;
+ *ypix = dy / yinc + yrefpix;
+ return(*status);
+}