diff options
Diffstat (limited to 'math/deboor/tautsp.f')
-rw-r--r-- | math/deboor/tautsp.f | 313 |
1 files changed, 313 insertions, 0 deletions
diff --git a/math/deboor/tautsp.f b/math/deboor/tautsp.f new file mode 100644 index 00000000..86e8eeb4 --- /dev/null +++ b/math/deboor/tautsp.f @@ -0,0 +1,313 @@ + subroutine tautsp ( tau, gtau, ntau, gamma, s, + * break, coef, l, k, iflag ) +c from * a practical guide to splines * by c. de boor +constructs cubic spline interpolant to given data +c tau(i), gtau(i), i=1,...,ntau. +c if gamma .gt. 0., additional knots are introduced where needed to +c make the interpolant more flexible locally. this avoids extraneous +c inflection points typical of cubic spline interpolation at knots to +c rapidly changing data. +c +c parameters +c input +c tau sequence of data points. must be strictly increasing. +c gtau corresponding sequence of function values. +c ntau number of data points. must be at least 4 . +c gamma indicates whether additional flexibility is desired. +c = 0., no additional knots +c in (0.,3.), under certain conditions on the given data at +c points i-1, i, i+1, and i+2, a knot is added in the +c i-th interval, i=2,...,ntau-2. see description of meth- +c od below. the interpolant gets rounded with increasing +c gamma. a value of 2.5 for gamma is typical. +c in (3.,6.), same , except that knots might also be added in +c intervals in which an inflection point would be permit- +c ted. a value of 5.5 for gamma is typical. +c output +c break, coef, l, k give the pp-representation of the interpolant. +c specifically, for break(i) .le. x .le. break(i+1), the +c interpolant has the form +c f(x) = coef(1,i) +dx(coef(2,i) +(dx/2)(coef(3,i) +(dx/3)coef(4,i))) +c with dx = x - break(i) and i=1,...,l . +c iflag = 1, ok +c = 2, input was incorrect. a printout specifying the mistake +c was made. +c workspace +c s is required, of size (ntau,6). the individual columns of this +c array contain the following quantities mentioned in the write- +c up and below. +c s(.,1) = dtau = tau(.+1) - tau +c s(.,2) = diag = diagonal in linear system +c s(.,3) = u = upper diagonal in linear system +c s(.,4) = r = right side for linear system (initially) +c = fsecnd = solution of linear system , namely the second +c derivatives of interpolant at tau +c s(.,5) = z = indicator of additional knots +c s(.,6) = 1/hsecnd(1,x) with x = z or = 1-z. see below. +c +c ------ m e t h o d ------ +c on the i-th interval, (tau(i), tau(i+1)), the interpolant is of the +c form +c (*) f(u(x)) = a + b*u + c*h(u,z) + d*h(1-u,1-z) , +c with u = u(x) = (x - tau(i))/dtau(i). here, +c z = z(i) = addg(i+1)/(addg(i) + addg(i+1)) +c (= .5, in case the denominator vanishes). with +c addg(j) = abs(ddg(j)), ddg(j) = dg(j+1) - dg(j), +c dg(j) = divdif(j) = (gtau(j+1) - gtau(j))/dtau(j) +c and +c h(u,z) = alpha*u**3 + (1 - alpha)*(max(((u-zeta)/(1-zeta)),0)**3 +c with +c alpha(z) = (1-gamma/3)/zeta +c zeta(z) = 1 - gamma*min((1 - z), 1/3) +c thus, for 1/3 .le. z .le. 2/3, f is just a cubic polynomial on +c the interval i. otherwise, it has one additional knot, at +c tau(i) + zeta*dtau(i) . +c as z approaches 1, h(.,z) has an increasingly sharp bend near 1, +c thus allowing f to turn rapidly near the additional knot. +c in terms of f(j) = gtau(j) and +c fsecnd(j) = 2.derivative of f at tau(j), +c the coefficients for (*) are given as +c a = f(i) - d +c b = (f(i+1) - f(i)) - (c - d) +c c = fsecnd(i+1)*dtau(i)**2/hsecnd(1,z) +c d = fsecnd(i)*dtau(i)**2/hsecnd(1,1-z) +c hence can be computed once fsecnd(i),i=1,...,ntau, is fixed. +c f is automatically continuous and has a continuous second derivat- +c ive (except when z = 0 or 1 for some i). we determine fscnd(.) from +c the requirement that also the first derivative of f be contin- +c uous. in addition, we require that the third derivative be continuous +c across tau(2) and across tau(ntau-1) . this leads to a strictly +c diagonally dominant tridiagonal linear system for the fsecnd(i) +c which we solve by gauss elimination without pivoting. +c + integer iflag,k,l,ntau, i,method,ntaum1 + real break(1),coef(4,1),gamma,gtau(ntau),s(ntau,6),tau(ntau) + * ,alpha,c,d,del,denom,divdif,entry,entry3,factor,factr2,gam + * ,onemg3,onemzt,ratio,sixth,temp,x,z,zeta,zt2 + real alph + alph(x) = amin1(1.,onemg3/x) +c +c there must be at least 4 interpolation points. + if (ntau .ge. 4) go to 5 +c print 600,ntau +c 600 format(8h ntau = ,i4,20h. should be .ge. 4 .) + go to 999 +c +construct delta tau and first and second (divided) differences of data +c + 5 ntaum1 = ntau - 1 + do 6 i=1,ntaum1 + s(i,1) = tau(i+1) - tau(i) + if (s(i,1) .gt. 0.) go to 6 +c print 610,i,tau(i),tau(i+1) +c 610 format(7h point ,i3,13h and the next,2e15.6,15h are disordered) + go to 999 + 6 s(i+1,4) = (gtau(i+1)-gtau(i))/s(i,1) + do 7 i=2,ntaum1 + 7 s(i,4) = s(i+1,4) - s(i,4) +c +construct system of equations for second derivatives at tau. at each +c interior data point, there is one continuity equation, at the first +c and the last interior data point there is an additional one for a +c total of ntau equations in ntau unknowns. +c + i = 2 + s(2,2) = s(1,1)/3. + sixth = 1./6. + method = 2 + gam = gamma + if (gam .le. 0.) method = 1 + if ( gam .le. 3.) go to 9 + method = 3 + gam = gam - 3. + 9 onemg3 = 1. - gam/3. +c ------ loop over i ------ + 10 continue +c construct z(i) and zeta(i) + z = .5 + go to (19,11,12),method + 11 if (s(i,4)*s(i+1,4) .lt. 0.) go to 19 + 12 temp = abs(s(i+1,4)) + denom = abs(s(i,4)) + temp + if (denom .eq. 0.) go to 19 + z = temp/denom + if (abs(z - .5) .le. sixth) z = .5 + 19 s(i,5) = z +c ******set up part of the i-th equation which depends on +c the i-th interval + if (z - .5) 21,22,23 + 21 zeta = gam*z + onemzt = 1. - zeta + zt2 = zeta**2 + alpha = alph(onemzt) + factor = zeta/(alpha*(zt2-1.) + 1.) + s(i,6) = zeta*factor/6. + s(i,2) = s(i,2) + s(i,1)*((1.-alpha*onemzt)*factor/2. - s(i,6)) +c if z = 0 and the previous z = 1, then d(i) = 0. since then +c also u(i-1) = l(i+1) = 0, its value does not matter. reset +c d(i) = 1 to insure nonzero pivot in elimination. + if (s(i,2) .le. 0.) s(i,2) = 1. + s(i,3) = s(i,1)/6. + go to 25 + 22 s(i,2) = s(i,2) + s(i,1)/3. + s(i,3) = s(i,1)/6. + go to 25 + 23 onemzt = gam*(1. - z) + zeta = 1. - onemzt + alpha = alph(zeta) + factor = onemzt/(1. - alpha*zeta*(1.+onemzt)) + s(i,6) = onemzt*factor/6. + s(i,2) = s(i,2) + s(i,1)/3. + s(i,3) = s(i,6)*s(i,1) + 25 if (i .gt. 2) go to 30 + s(1,5) = .5 +c ******the first two equations enforce continuity of the first and of +c the third derivative across tau(2). + s(1,2) = s(1,1)/6. + s(1,3) = s(2,2) + entry3 = s(2,3) + if (z - .5) 26,27,28 + 26 factr2 = zeta*(alpha*(zt2-1.) + 1.)/(alpha*(zeta*zt2-1.)+1.) + ratio = factr2*s(2,1)/s(1,2) + s(2,2) = factr2*s(2,1) + s(1,1) + s(2,3) = -factr2*s(1,1) + go to 29 + 27 ratio = s(2,1)/s(1,2) + s(2,2) = s(2,1) + s(1,1) + s(2,3) = -s(1,1) + go to 29 + 28 ratio = s(2,1)/s(1,2) + s(2,2) = s(2,1) + s(1,1) + s(2,3) = -s(1,1)*6.*alpha*s(2,6) +c at this point, the first two equations read +c diag(1)*x1 + u(1)*x2 + entry3*x3 = r(2) +c -ratio*diag(1)*x1 + diag(2)*x2 + u(2)*x3 = 0. +c eliminate first unknown from second equation + 29 s(2,2) = ratio*s(1,3) + s(2,2) + s(2,3) = ratio*entry3 + s(2,3) + s(1,4) = s(2,4) + s(2,4) = ratio*s(1,4) + go to 35 + 30 continue +c ******the i-th equation enforces continuity of the first derivative +c across tau(i). it has been set up in statements 35 up to 40 +c and 21 up to 25 and reads now +c -ratio*diag(i-1)*xi-1 + diag(i)*xi + u(i)*xi+1 = r(i) . +c eliminate (i-1)st unknown from this equation + s(i,2) = ratio*s(i-1,3) + s(i,2) + s(i,4) = ratio*s(i-1,4) + s(i,4) +c +c ******set up the part of the next equation which depends on the +c i-th interval. + 35 if (z - .5) 36,37,38 + 36 ratio = -s(i,6)*s(i,1)/s(i,2) + s(i+1,2) = s(i,1)/3. + go to 40 + 37 ratio = -(s(i,1)/6.)/s(i,2) + s(i+1,2) = s(i,1)/3. + go to 40 + 38 ratio = -(s(i,1)/6.)/s(i,2) + s(i+1,2) = s(i,1)*((1.-zeta*alpha)*factor/2. - s(i,6)) +c ------ end of i loop ------ + 40 i = i+1 + if (i .lt. ntaum1) go to 10 + s(i,5) = .5 +c +c ------ last two equations ------ +c the last two equations enforce continuity of third derivative and +c of first derivative across tau(ntau-1). + entry = ratio*s(i-1,3) + s(i,2) + s(i,1)/3. + s(i+1,2) = s(i,1)/6. + s(i+1,4) = ratio*s(i-1,4) + s(i,4) + if (z - .5) 41,42,43 + 41 ratio = s(i,1)*6.*s(i-1,6)*alpha/s(i-1,2) + s(i,2) = ratio*s(i-1,3) + s(i,1) + s(i-1,1) + s(i,3) = -s(i-1,1) + go to 45 + 42 ratio = s(i,1)/s(i-1,2) + s(i,2) = ratio*s(i-1,3) + s(i,1) + s(i-1,1) + s(i,3) = -s(i-1,1) + go to 45 + 43 factr2 = onemzt*(alpha*(onemzt**2-1.)+1.)/ + * (alpha*(onemzt**3-1.)+1.) + ratio = factr2*s(i,1)/s(i-1,2) + s(i,2) = ratio*s(i-1,3) + factr2*s(i-1,1) + s(i,1) + s(i,3) = -factr2*s(i-1,1) +c at this point, the last two equations read +c diag(i)*xi + u(i)*xi+1 = r(i) +c -ratio*diag(i)*xi + diag(i+1)*xi+1 = r(i+1) +c eliminate xi from last equation + 45 s(i,4) = ratio*s(i-1,4) + ratio = -entry/s(i,2) + s(i+1,2) = ratio*s(i,3) + s(i+1,2) + s(i+1,4) = ratio*s(i,4) + s(i+1,4) +c +c ------ back substitution ------ +c + s(ntau,4) = s(ntau,4)/s(ntau,2) + 50 s(i,4) = (s(i,4) - s(i,3)*s(i+1,4))/s(i,2) + i = i - 1 + if (i .gt. 1) go to 50 + s(1,4) = (s(1,4)-s(1,3)*s(2,4)-entry3*s(3,4))/s(1,2) +c +c ------ construct polynomial pieces ------ +c + break(1) = tau(1) + l = 1 + do 70 i=1,ntaum1 + coef(1,l) = gtau(i) + coef(3,l) = s(i,4) + divdif = (gtau(i+1)-gtau(i))/s(i,1) + z = s(i,5) + if (z - .5) 61,62,63 + 61 if (z .eq. 0.) go to 65 + zeta = gam*z + onemzt = 1. - zeta + c = s(i+1,4)/6. + d = s(i,4)*s(i,6) + l = l + 1 + del = zeta*s(i,1) + break(l) = tau(i) + del + zt2 = zeta**2 + alpha = alph(onemzt) + factor = onemzt**2*alpha + coef(1,l) = gtau(i) + divdif*del + * + s(i,1)**2*(d*onemzt*(factor-1.)+c*zeta*(zt2-1.)) + coef(2,l) = divdif + s(i,1)*(d*(1.-3.*factor)+c*(3.*zt2-1.)) + coef(3,l) = 6.*(d*alpha*onemzt + c*zeta) + coef(4,l) = 6.*(c - d*alpha)/s(i,1) + coef(4,l-1) = coef(4,l) - 6.*d*(1.-alpha)/(del*zt2) + coef(2,l-1) = coef(2,l) - del*(coef(3,l) -(del/2.)*coef(4,l-1)) + go to 68 + 62 coef(2,l) = divdif - s(i,1)*(2.*s(i,4) + s(i+1,4))/6. + coef(4,l) = (s(i+1,4)-s(i,4))/s(i,1) + go to 68 + 63 onemzt = gam*(1. - z) + if (onemzt .eq. 0.) go to 65 + zeta = 1. - onemzt + alpha = alph(zeta) + c = s(i+1,4)*s(i,6) + d = s(i,4)/6. + del = zeta*s(i,1) + break(l+1) = tau(i) + del + coef(2,l) = divdif - s(i,1)*(2.*d + c) + coef(4,l) = 6.*(c*alpha - d)/s(i,1) + l = l + 1 + coef(4,l) = coef(4,l-1) + 6.*(1.-alpha)*c/(s(i,1)*onemzt**3) + coef(3,l) = coef(3,l-1) + del*coef(4,l-1) + coef(2,l) = coef(2,l-1)+del*(coef(3,l-1)+(del/2.)*coef(4,l-1)) + coef(1,l) = coef(1,l-1)+del*(coef(2,l-1)+(del/2.)*(coef(3,l-1) + * +(del/3.)*coef(4,l-1))) + go to 68 + 65 coef(2,l) = divdif + coef(3,l) = 0. + coef(4,l) = 0. + 68 l = l + 1 + 70 break(l) = tau(i+1) + l = l - 1 + k = 4 + iflag = 1 + return + 999 iflag = 2 + return + end |