aboutsummaryrefslogtreecommitdiff
path: root/math/ieee/chap1/fftsoh.f
diff options
context:
space:
mode:
Diffstat (limited to 'math/ieee/chap1/fftsoh.f')
-rw-r--r--math/ieee/chap1/fftsoh.f81
1 files changed, 81 insertions, 0 deletions
diff --git a/math/ieee/chap1/fftsoh.f b/math/ieee/chap1/fftsoh.f
new file mode 100644
index 00000000..afc18c17
--- /dev/null
+++ b/math/ieee/chap1/fftsoh.f
@@ -0,0 +1,81 @@
+c
+c-----------------------------------------------------------------------
+c subroutine: fftsoh
+c compute dft for real, symmetric, odd harmonic, n-point sequence
+c using n/4-point fft
+c symmetric sequence means x(m)=x(n-m), m=1,...,n/2-1
+c odd harmonic means x(2*k)=0, all k, where x(k) is the dft of x(m)
+c x(m) has the property x(m)=-x(n/2-m), m=0,1,...,n/4-1, x(n/4)=0
+c note: index m is sequence index--not fortran index
+c-----------------------------------------------------------------------
+c
+ subroutine fftsoh(x, n, y)
+ dimension x(1), y(1)
+c
+c x = real array which on input contains the n/4 points of the
+c input sequence (symmetrical)
+c on output x contains the n/4 real points of the odd harmonics
+c of the transform of the input--i.e. the zero valued imaginary
+c parts are not given nor are the zero-valued even harmonics
+c n = true size of input
+c y = scratch array of size n/4+2
+c
+c
+c handle n = 2 and n = 4 cases separately
+c
+ if (n.gt.4) go to 20
+ if (n.eq.4) go to 10
+c
+c for n=2, assume x(1)=x0, x(2)=-x0, compute dft directly
+c
+ x(1) = 2.*x(1)
+ return
+c
+c n = 4 case, compute dft directly
+c
+ 10 x(1) = 2.*x(1)
+ return
+ 20 twopi = 8.*atan(1.0)
+c
+c form new sequence, y(m)=x(2*m)+(x(2*m+1)-x(2*m-1))
+c
+ no2 = n/2
+ no4 = n/4
+ no8 = n/8
+ if (no8.eq.1) go to 40
+ do 30 i=2,no8
+ ind = 2*i
+ t1 = x(ind) - x(ind-2)
+ y(i) = x(ind-1) + t1
+ ind1 = n/4 + 2 - i
+ y(ind1) = -x(ind-1) + t1
+ 30 continue
+ 40 y(1) = x(1)
+ y(no8+1) = -2.*x(no4)
+c
+c the sequence y (n/4 points) has only odd harmonics
+c call subroutine fftohm to exploit odd harmonics
+c
+ call fftohm(y, no2)
+c
+c form original dft from complex odd harmonics of y(k)
+c by unscrambling y(k)
+c
+ tpn = twopi/float(n)
+ cosi = 2.*cos(tpn)
+ sini = 2.*sin(tpn)
+ cosd = cos(tpn*2.)
+ sind = sin(tpn*2.)
+ do 50 i=1,no8
+ ind = 2*i
+ bk = y(ind)/sini
+ temp = cosi*cosd - sini*sind
+ sini = cosi*sind + sini*cosd
+ cosi = temp
+ ak = y(ind-1)
+ x(i) = ak + bk
+ ind1 = n/4 + 1 - i
+ x(ind1) = ak - bk
+ 50 continue
+ return
+ end