diff options
Diffstat (limited to 'math/ieee/chap1/iftaoh.f')
-rw-r--r-- | math/ieee/chap1/iftaoh.f | 87 |
1 files changed, 87 insertions, 0 deletions
diff --git a/math/ieee/chap1/iftaoh.f b/math/ieee/chap1/iftaoh.f new file mode 100644 index 00000000..8cb0a908 --- /dev/null +++ b/math/ieee/chap1/iftaoh.f @@ -0,0 +1,87 @@ +c +c----------------------------------------------------------------------- +c subroutine: iftaoh +c compute idft for real, antisymmetric, odd harmonic, n-point sequence +c using n/4-point fft +c antisymmetric sequence means x(m)=-x(n-m), m=1,...,n/2-1 +c odd harmonic means x(2*k)=0, all k, where x(k) is the dft of x(m) +c x(m)has the property x(m)=x(n/2-m), m=0,1,...,n/4-1, x(0)=0 +c note: index m is sequence index--not fortran index +c----------------------------------------------------------------------- +c + subroutine iftaoh(x, n, y) + dimension x(1), y(1) +c +c x = real array which on input contains the n/4 imaginary points +c of the odd harmonics of the transform of the original time +c sequence--i.e. the zero valued real parts are not input nor +c are the zero-valued even harmonics +c on output x contains the first (n/4+1) points of the original +c time sequence (antisymmetrical) +c n = true size of input +c y = scratch array of size n/4+2 +c +c +c handle n = 2 and n = 4 cases separately +c + if (n.gt.4) go to 20 + if (n.eq.4) go to 10 +c +c for n=2 assume x(1)=0, x(2)=0, compute idft directly +c + x(1) = 0. + return +c +c for n=4, assume x(1)=x(3)=0, x(2)=-x(4)=x0, compute idft directly +c + 10 x(2) = -x(1)/2. + x(1) = 0. + return +c +c code for values of n which are multiples of 8 +c + 20 twopi = 8.*atan(1.0) + no2 = n/2 + no4 = n/4 + no8 = n/8 + tpn = twopi/float(n) +c +c scramble original dft (x(k)) to give y(k) +c use recursion to give sin multipliers +c + cosi = cos(tpn) + sini = sin(tpn) + cosd = cos(tpn*2.) + sind = sin(tpn*2.) + do 30 i=1,no8 + ind = 2*i + ind1 = no4 + 1 - i + ak = (x(i)-x(ind1))/2. + bk = -(x(i)+x(ind1)) + y(ind) = ak + y(ind-1) = bk*sini + temp = cosi*cosd - sini*sind + sini = cosi*sind + sini*cosd + cosi = temp + 30 continue +c +c the sequence y(k) is an odd harmonic sequence +c use subroutine iftohm to give y(m) +c + call iftohm(y, no2) +c +c form x sequence from y sequence +c + x(2) = y(1)/2. + x(1) = 0. + if (n.eq.8) return + do 40 i=2,no8 + ind = 2*i + ind1 = no4 + 2 - i + x(ind-1) = (y(i)+y(ind1))/2. + t1 = (y(i)-y(ind1))/2. + x(ind) = t1 + x(ind-2) + 40 continue + x(no4+1) = y(no8+1) + return + end |