aboutsummaryrefslogtreecommitdiff
path: root/math/minpack/hybrj.f
diff options
context:
space:
mode:
Diffstat (limited to 'math/minpack/hybrj.f')
-rw-r--r--math/minpack/hybrj.f440
1 files changed, 440 insertions, 0 deletions
diff --git a/math/minpack/hybrj.f b/math/minpack/hybrj.f
new file mode 100644
index 00000000..3070dad3
--- /dev/null
+++ b/math/minpack/hybrj.f
@@ -0,0 +1,440 @@
+ subroutine hybrj(fcn,n,x,fvec,fjac,ldfjac,xtol,maxfev,diag,mode,
+ * factor,nprint,info,nfev,njev,r,lr,qtf,wa1,wa2,
+ * wa3,wa4)
+ integer n,ldfjac,maxfev,mode,nprint,info,nfev,njev,lr
+ double precision xtol,factor
+ double precision x(n),fvec(n),fjac(ldfjac,n),diag(n),r(lr),
+ * qtf(n),wa1(n),wa2(n),wa3(n),wa4(n)
+c **********
+c
+c subroutine hybrj
+c
+c the purpose of hybrj is to find a zero of a system of
+c n nonlinear functions in n variables by a modification
+c of the powell hybrid method. the user must provide a
+c subroutine which calculates the functions and the jacobian.
+c
+c the subroutine statement is
+c
+c subroutine hybrj(fcn,n,x,fvec,fjac,ldfjac,xtol,maxfev,diag,
+c mode,factor,nprint,info,nfev,njev,r,lr,qtf,
+c wa1,wa2,wa3,wa4)
+c
+c where
+c
+c fcn is the name of the user-supplied subroutine which
+c calculates the functions and the jacobian. fcn must
+c be declared in an external statement in the user
+c calling program, and should be written as follows.
+c
+c subroutine fcn(n,x,fvec,fjac,ldfjac,iflag)
+c integer n,ldfjac,iflag
+c double precision x(n),fvec(n),fjac(ldfjac,n)
+c ----------
+c if iflag = 1 calculate the functions at x and
+c return this vector in fvec. do not alter fjac.
+c if iflag = 2 calculate the jacobian at x and
+c return this matrix in fjac. do not alter fvec.
+c ---------
+c return
+c end
+c
+c the value of iflag should not be changed by fcn unless
+c the user wants to terminate execution of hybrj.
+c in this case set iflag to a negative integer.
+c
+c n is a positive integer input variable set to the number
+c of functions and variables.
+c
+c x is an array of length n. on input x must contain
+c an initial estimate of the solution vector. on output x
+c contains the final estimate of the solution vector.
+c
+c fvec is an output array of length n which contains
+c the functions evaluated at the output x.
+c
+c fjac is an output n by n array which contains the
+c orthogonal matrix q produced by the qr factorization
+c of the final approximate jacobian.
+c
+c ldfjac is a positive integer input variable not less than n
+c which specifies the leading dimension of the array fjac.
+c
+c xtol is a nonnegative input variable. termination
+c occurs when the relative error between two consecutive
+c iterates is at most xtol.
+c
+c maxfev is a positive integer input variable. termination
+c occurs when the number of calls to fcn with iflag = 1
+c has reached maxfev.
+c
+c diag is an array of length n. if mode = 1 (see
+c below), diag is internally set. if mode = 2, diag
+c must contain positive entries that serve as
+c multiplicative scale factors for the variables.
+c
+c mode is an integer input variable. if mode = 1, the
+c variables will be scaled internally. if mode = 2,
+c the scaling is specified by the input diag. other
+c values of mode are equivalent to mode = 1.
+c
+c factor is a positive input variable used in determining the
+c initial step bound. this bound is set to the product of
+c factor and the euclidean norm of diag*x if nonzero, or else
+c to factor itself. in most cases factor should lie in the
+c interval (.1,100.). 100. is a generally recommended value.
+c
+c nprint is an integer input variable that enables controlled
+c printing of iterates if it is positive. in this case,
+c fcn is called with iflag = 0 at the beginning of the first
+c iteration and every nprint iterations thereafter and
+c immediately prior to return, with x and fvec available
+c for printing. fvec and fjac should not be altered.
+c if nprint is not positive, no special calls of fcn
+c with iflag = 0 are made.
+c
+c info is an integer output variable. if the user has
+c terminated execution, info is set to the (negative)
+c value of iflag. see description of fcn. otherwise,
+c info is set as follows.
+c
+c info = 0 improper input parameters.
+c
+c info = 1 relative error between two consecutive iterates
+c is at most xtol.
+c
+c info = 2 number of calls to fcn with iflag = 1 has
+c reached maxfev.
+c
+c info = 3 xtol is too small. no further improvement in
+c the approximate solution x is possible.
+c
+c info = 4 iteration is not making good progress, as
+c measured by the improvement from the last
+c five jacobian evaluations.
+c
+c info = 5 iteration is not making good progress, as
+c measured by the improvement from the last
+c ten iterations.
+c
+c nfev is an integer output variable set to the number of
+c calls to fcn with iflag = 1.
+c
+c njev is an integer output variable set to the number of
+c calls to fcn with iflag = 2.
+c
+c r is an output array of length lr which contains the
+c upper triangular matrix produced by the qr factorization
+c of the final approximate jacobian, stored rowwise.
+c
+c lr is a positive integer input variable not less than
+c (n*(n+1))/2.
+c
+c qtf is an output array of length n which contains
+c the vector (q transpose)*fvec.
+c
+c wa1, wa2, wa3, and wa4 are work arrays of length n.
+c
+c subprograms called
+c
+c user-supplied ...... fcn
+c
+c minpack-supplied ... dogleg,dpmpar,enorm,
+c qform,qrfac,r1mpyq,r1updt
+c
+c fortran-supplied ... dabs,dmax1,dmin1,mod
+c
+c argonne national laboratory. minpack project. march 1980.
+c burton s. garbow, kenneth e. hillstrom, jorge j. more
+c
+c **********
+ integer i,iflag,iter,j,jm1,l,ncfail,ncsuc,nslow1,nslow2
+ integer iwa(1)
+ logical jeval,sing
+ double precision actred,delta,epsmch,fnorm,fnorm1,one,pnorm,
+ * prered,p1,p5,p001,p0001,ratio,sum,temp,xnorm,
+ * zero
+ double precision dpmpar,enorm
+ data one,p1,p5,p001,p0001,zero
+ * /1.0d0,1.0d-1,5.0d-1,1.0d-3,1.0d-4,0.0d0/
+c
+c epsmch is the machine precision.
+c
+ epsmch = dpmpar(1)
+c
+ info = 0
+ iflag = 0
+ nfev = 0
+ njev = 0
+c
+c check the input parameters for errors.
+c
+ if (n .le. 0 .or. ldfjac .lt. n .or. xtol .lt. zero
+ * .or. maxfev .le. 0 .or. factor .le. zero
+ * .or. lr .lt. (n*(n + 1))/2) go to 300
+ if (mode .ne. 2) go to 20
+ do 10 j = 1, n
+ if (diag(j) .le. zero) go to 300
+ 10 continue
+ 20 continue
+c
+c evaluate the function at the starting point
+c and calculate its norm.
+c
+ iflag = 1
+ call fcn(n,x,fvec,fjac,ldfjac,iflag)
+ nfev = 1
+ if (iflag .lt. 0) go to 300
+ fnorm = enorm(n,fvec)
+c
+c initialize iteration counter and monitors.
+c
+ iter = 1
+ ncsuc = 0
+ ncfail = 0
+ nslow1 = 0
+ nslow2 = 0
+c
+c beginning of the outer loop.
+c
+ 30 continue
+ jeval = .true.
+c
+c calculate the jacobian matrix.
+c
+ iflag = 2
+ call fcn(n,x,fvec,fjac,ldfjac,iflag)
+ njev = njev + 1
+ if (iflag .lt. 0) go to 300
+c
+c compute the qr factorization of the jacobian.
+c
+ call qrfac(n,n,fjac,ldfjac,.false.,iwa,1,wa1,wa2,wa3)
+c
+c on the first iteration and if mode is 1, scale according
+c to the norms of the columns of the initial jacobian.
+c
+ if (iter .ne. 1) go to 70
+ if (mode .eq. 2) go to 50
+ do 40 j = 1, n
+ diag(j) = wa2(j)
+ if (wa2(j) .eq. zero) diag(j) = one
+ 40 continue
+ 50 continue
+c
+c on the first iteration, calculate the norm of the scaled x
+c and initialize the step bound delta.
+c
+ do 60 j = 1, n
+ wa3(j) = diag(j)*x(j)
+ 60 continue
+ xnorm = enorm(n,wa3)
+ delta = factor*xnorm
+ if (delta .eq. zero) delta = factor
+ 70 continue
+c
+c form (q transpose)*fvec and store in qtf.
+c
+ do 80 i = 1, n
+ qtf(i) = fvec(i)
+ 80 continue
+ do 120 j = 1, n
+ if (fjac(j,j) .eq. zero) go to 110
+ sum = zero
+ do 90 i = j, n
+ sum = sum + fjac(i,j)*qtf(i)
+ 90 continue
+ temp = -sum/fjac(j,j)
+ do 100 i = j, n
+ qtf(i) = qtf(i) + fjac(i,j)*temp
+ 100 continue
+ 110 continue
+ 120 continue
+c
+c copy the triangular factor of the qr factorization into r.
+c
+ sing = .false.
+ do 150 j = 1, n
+ l = j
+ jm1 = j - 1
+ if (jm1 .lt. 1) go to 140
+ do 130 i = 1, jm1
+ r(l) = fjac(i,j)
+ l = l + n - i
+ 130 continue
+ 140 continue
+ r(l) = wa1(j)
+ if (wa1(j) .eq. zero) sing = .true.
+ 150 continue
+c
+c accumulate the orthogonal factor in fjac.
+c
+ call qform(n,n,fjac,ldfjac,wa1)
+c
+c rescale if necessary.
+c
+ if (mode .eq. 2) go to 170
+ do 160 j = 1, n
+ diag(j) = dmax1(diag(j),wa2(j))
+ 160 continue
+ 170 continue
+c
+c beginning of the inner loop.
+c
+ 180 continue
+c
+c if requested, call fcn to enable printing of iterates.
+c
+ if (nprint .le. 0) go to 190
+ iflag = 0
+ if (mod(iter-1,nprint) .eq. 0)
+ * call fcn(n,x,fvec,fjac,ldfjac,iflag)
+ if (iflag .lt. 0) go to 300
+ 190 continue
+c
+c determine the direction p.
+c
+ call dogleg(n,r,lr,diag,qtf,delta,wa1,wa2,wa3)
+c
+c store the direction p and x + p. calculate the norm of p.
+c
+ do 200 j = 1, n
+ wa1(j) = -wa1(j)
+ wa2(j) = x(j) + wa1(j)
+ wa3(j) = diag(j)*wa1(j)
+ 200 continue
+ pnorm = enorm(n,wa3)
+c
+c on the first iteration, adjust the initial step bound.
+c
+ if (iter .eq. 1) delta = dmin1(delta,pnorm)
+c
+c evaluate the function at x + p and calculate its norm.
+c
+ iflag = 1
+ call fcn(n,wa2,wa4,fjac,ldfjac,iflag)
+ nfev = nfev + 1
+ if (iflag .lt. 0) go to 300
+ fnorm1 = enorm(n,wa4)
+c
+c compute the scaled actual reduction.
+c
+ actred = -one
+ if (fnorm1 .lt. fnorm) actred = one - (fnorm1/fnorm)**2
+c
+c compute the scaled predicted reduction.
+c
+ l = 1
+ do 220 i = 1, n
+ sum = zero
+ do 210 j = i, n
+ sum = sum + r(l)*wa1(j)
+ l = l + 1
+ 210 continue
+ wa3(i) = qtf(i) + sum
+ 220 continue
+ temp = enorm(n,wa3)
+ prered = zero
+ if (temp .lt. fnorm) prered = one - (temp/fnorm)**2
+c
+c compute the ratio of the actual to the predicted
+c reduction.
+c
+ ratio = zero
+ if (prered .gt. zero) ratio = actred/prered
+c
+c update the step bound.
+c
+ if (ratio .ge. p1) go to 230
+ ncsuc = 0
+ ncfail = ncfail + 1
+ delta = p5*delta
+ go to 240
+ 230 continue
+ ncfail = 0
+ ncsuc = ncsuc + 1
+ if (ratio .ge. p5 .or. ncsuc .gt. 1)
+ * delta = dmax1(delta,pnorm/p5)
+ if (dabs(ratio-one) .le. p1) delta = pnorm/p5
+ 240 continue
+c
+c test for successful iteration.
+c
+ if (ratio .lt. p0001) go to 260
+c
+c successful iteration. update x, fvec, and their norms.
+c
+ do 250 j = 1, n
+ x(j) = wa2(j)
+ wa2(j) = diag(j)*x(j)
+ fvec(j) = wa4(j)
+ 250 continue
+ xnorm = enorm(n,wa2)
+ fnorm = fnorm1
+ iter = iter + 1
+ 260 continue
+c
+c determine the progress of the iteration.
+c
+ nslow1 = nslow1 + 1
+ if (actred .ge. p001) nslow1 = 0
+ if (jeval) nslow2 = nslow2 + 1
+ if (actred .ge. p1) nslow2 = 0
+c
+c test for convergence.
+c
+ if (delta .le. xtol*xnorm .or. fnorm .eq. zero) info = 1
+ if (info .ne. 0) go to 300
+c
+c tests for termination and stringent tolerances.
+c
+ if (nfev .ge. maxfev) info = 2
+ if (p1*dmax1(p1*delta,pnorm) .le. epsmch*xnorm) info = 3
+ if (nslow2 .eq. 5) info = 4
+ if (nslow1 .eq. 10) info = 5
+ if (info .ne. 0) go to 300
+c
+c criterion for recalculating jacobian.
+c
+ if (ncfail .eq. 2) go to 290
+c
+c calculate the rank one modification to the jacobian
+c and update qtf if necessary.
+c
+ do 280 j = 1, n
+ sum = zero
+ do 270 i = 1, n
+ sum = sum + fjac(i,j)*wa4(i)
+ 270 continue
+ wa2(j) = (sum - wa3(j))/pnorm
+ wa1(j) = diag(j)*((diag(j)*wa1(j))/pnorm)
+ if (ratio .ge. p0001) qtf(j) = sum
+ 280 continue
+c
+c compute the qr factorization of the updated jacobian.
+c
+ call r1updt(n,n,r,lr,wa1,wa2,wa3,sing)
+ call r1mpyq(n,n,fjac,ldfjac,wa2,wa3)
+ call r1mpyq(1,n,qtf,1,wa2,wa3)
+c
+c end of the inner loop.
+c
+ jeval = .false.
+ go to 180
+ 290 continue
+c
+c end of the outer loop.
+c
+ go to 30
+ 300 continue
+c
+c termination, either normal or user imposed.
+c
+ if (iflag .lt. 0) info = iflag
+ iflag = 0
+ if (nprint .gt. 0) call fcn(n,x,fvec,fjac,ldfjac,iflag)
+ return
+c
+c last card of subroutine hybrj.
+c
+ end