diff options
Diffstat (limited to 'math/minpack/lmpar.f')
-rw-r--r-- | math/minpack/lmpar.f | 264 |
1 files changed, 264 insertions, 0 deletions
diff --git a/math/minpack/lmpar.f b/math/minpack/lmpar.f new file mode 100644 index 00000000..26c422a7 --- /dev/null +++ b/math/minpack/lmpar.f @@ -0,0 +1,264 @@ + subroutine lmpar(n,r,ldr,ipvt,diag,qtb,delta,par,x,sdiag,wa1, + * wa2) + integer n,ldr + integer ipvt(n) + double precision delta,par + double precision r(ldr,n),diag(n),qtb(n),x(n),sdiag(n),wa1(n), + * wa2(n) +c ********** +c +c subroutine lmpar +c +c given an m by n matrix a, an n by n nonsingular diagonal +c matrix d, an m-vector b, and a positive number delta, +c the problem is to determine a value for the parameter +c par such that if x solves the system +c +c a*x = b , sqrt(par)*d*x = 0 , +c +c in the least squares sense, and dxnorm is the euclidean +c norm of d*x, then either par is zero and +c +c (dxnorm-delta) .le. 0.1*delta , +c +c or par is positive and +c +c abs(dxnorm-delta) .le. 0.1*delta . +c +c this subroutine completes the solution of the problem +c if it is provided with the necessary information from the +c qr factorization, with column pivoting, of a. that is, if +c a*p = q*r, where p is a permutation matrix, q has orthogonal +c columns, and r is an upper triangular matrix with diagonal +c elements of nonincreasing magnitude, then lmpar expects +c the full upper triangle of r, the permutation matrix p, +c and the first n components of (q transpose)*b. on output +c lmpar also provides an upper triangular matrix s such that +c +c t t t +c p *(a *a + par*d*d)*p = s *s . +c +c s is employed within lmpar and may be of separate interest. +c +c only a few iterations are generally needed for convergence +c of the algorithm. if, however, the limit of 10 iterations +c is reached, then the output par will contain the best +c value obtained so far. +c +c the subroutine statement is +c +c subroutine lmpar(n,r,ldr,ipvt,diag,qtb,delta,par,x,sdiag, +c wa1,wa2) +c +c where +c +c n is a positive integer input variable set to the order of r. +c +c r is an n by n array. on input the full upper triangle +c must contain the full upper triangle of the matrix r. +c on output the full upper triangle is unaltered, and the +c strict lower triangle contains the strict upper triangle +c (transposed) of the upper triangular matrix s. +c +c ldr is a positive integer input variable not less than n +c which specifies the leading dimension of the array r. +c +c ipvt is an integer input array of length n which defines the +c permutation matrix p such that a*p = q*r. column j of p +c is column ipvt(j) of the identity matrix. +c +c diag is an input array of length n which must contain the +c diagonal elements of the matrix d. +c +c qtb is an input array of length n which must contain the first +c n elements of the vector (q transpose)*b. +c +c delta is a positive input variable which specifies an upper +c bound on the euclidean norm of d*x. +c +c par is a nonnegative variable. on input par contains an +c initial estimate of the levenberg-marquardt parameter. +c on output par contains the final estimate. +c +c x is an output array of length n which contains the least +c squares solution of the system a*x = b, sqrt(par)*d*x = 0, +c for the output par. +c +c sdiag is an output array of length n which contains the +c diagonal elements of the upper triangular matrix s. +c +c wa1 and wa2 are work arrays of length n. +c +c subprograms called +c +c minpack-supplied ... dpmpar,enorm,qrsolv +c +c fortran-supplied ... dabs,dmax1,dmin1,dsqrt +c +c argonne national laboratory. minpack project. march 1980. +c burton s. garbow, kenneth e. hillstrom, jorge j. more +c +c ********** + integer i,iter,j,jm1,jp1,k,l,nsing + double precision dxnorm,dwarf,fp,gnorm,parc,parl,paru,p1,p001, + * sum,temp,zero + double precision dpmpar,enorm + data p1,p001,zero /1.0d-1,1.0d-3,0.0d0/ +c +c dwarf is the smallest positive magnitude. +c + dwarf = dpmpar(2) +c +c compute and store in x the gauss-newton direction. if the +c jacobian is rank-deficient, obtain a least squares solution. +c + nsing = n + do 10 j = 1, n + wa1(j) = qtb(j) + if (r(j,j) .eq. zero .and. nsing .eq. n) nsing = j - 1 + if (nsing .lt. n) wa1(j) = zero + 10 continue + if (nsing .lt. 1) go to 50 + do 40 k = 1, nsing + j = nsing - k + 1 + wa1(j) = wa1(j)/r(j,j) + temp = wa1(j) + jm1 = j - 1 + if (jm1 .lt. 1) go to 30 + do 20 i = 1, jm1 + wa1(i) = wa1(i) - r(i,j)*temp + 20 continue + 30 continue + 40 continue + 50 continue + do 60 j = 1, n + l = ipvt(j) + x(l) = wa1(j) + 60 continue +c +c initialize the iteration counter. +c evaluate the function at the origin, and test +c for acceptance of the gauss-newton direction. +c + iter = 0 + do 70 j = 1, n + wa2(j) = diag(j)*x(j) + 70 continue + dxnorm = enorm(n,wa2) + fp = dxnorm - delta + if (fp .le. p1*delta) go to 220 +c +c if the jacobian is not rank deficient, the newton +c step provides a lower bound, parl, for the zero of +c the function. otherwise set this bound to zero. +c + parl = zero + if (nsing .lt. n) go to 120 + do 80 j = 1, n + l = ipvt(j) + wa1(j) = diag(l)*(wa2(l)/dxnorm) + 80 continue + do 110 j = 1, n + sum = zero + jm1 = j - 1 + if (jm1 .lt. 1) go to 100 + do 90 i = 1, jm1 + sum = sum + r(i,j)*wa1(i) + 90 continue + 100 continue + wa1(j) = (wa1(j) - sum)/r(j,j) + 110 continue + temp = enorm(n,wa1) + parl = ((fp/delta)/temp)/temp + 120 continue +c +c calculate an upper bound, paru, for the zero of the function. +c + do 140 j = 1, n + sum = zero + do 130 i = 1, j + sum = sum + r(i,j)*qtb(i) + 130 continue + l = ipvt(j) + wa1(j) = sum/diag(l) + 140 continue + gnorm = enorm(n,wa1) + paru = gnorm/delta + if (paru .eq. zero) paru = dwarf/dmin1(delta,p1) +c +c if the input par lies outside of the interval (parl,paru), +c set par to the closer endpoint. +c + par = dmax1(par,parl) + par = dmin1(par,paru) + if (par .eq. zero) par = gnorm/dxnorm +c +c beginning of an iteration. +c + 150 continue + iter = iter + 1 +c +c evaluate the function at the current value of par. +c + if (par .eq. zero) par = dmax1(dwarf,p001*paru) + temp = dsqrt(par) + do 160 j = 1, n + wa1(j) = temp*diag(j) + 160 continue + call qrsolv(n,r,ldr,ipvt,wa1,qtb,x,sdiag,wa2) + do 170 j = 1, n + wa2(j) = diag(j)*x(j) + 170 continue + dxnorm = enorm(n,wa2) + temp = fp + fp = dxnorm - delta +c +c if the function is small enough, accept the current value +c of par. also test for the exceptional cases where parl +c is zero or the number of iterations has reached 10. +c + if (dabs(fp) .le. p1*delta + * .or. parl .eq. zero .and. fp .le. temp + * .and. temp .lt. zero .or. iter .eq. 10) go to 220 +c +c compute the newton correction. +c + do 180 j = 1, n + l = ipvt(j) + wa1(j) = diag(l)*(wa2(l)/dxnorm) + 180 continue + do 210 j = 1, n + wa1(j) = wa1(j)/sdiag(j) + temp = wa1(j) + jp1 = j + 1 + if (n .lt. jp1) go to 200 + do 190 i = jp1, n + wa1(i) = wa1(i) - r(i,j)*temp + 190 continue + 200 continue + 210 continue + temp = enorm(n,wa1) + parc = ((fp/delta)/temp)/temp +c +c depending on the sign of the function, update parl or paru. +c + if (fp .gt. zero) parl = dmax1(parl,par) + if (fp .lt. zero) paru = dmin1(paru,par) +c +c compute an improved estimate for par. +c + par = dmax1(parl,par+parc) +c +c end of an iteration. +c + go to 150 + 220 continue +c +c termination. +c + if (iter .eq. 0) par = zero + return +c +c last card of subroutine lmpar. +c + end |