diff options
Diffstat (limited to 'math/minpack/lmstr1.f')
-rw-r--r-- | math/minpack/lmstr1.f | 156 |
1 files changed, 156 insertions, 0 deletions
diff --git a/math/minpack/lmstr1.f b/math/minpack/lmstr1.f new file mode 100644 index 00000000..2fa8ee1c --- /dev/null +++ b/math/minpack/lmstr1.f @@ -0,0 +1,156 @@ + subroutine lmstr1(fcn,m,n,x,fvec,fjac,ldfjac,tol,info,ipvt,wa, + * lwa) + integer m,n,ldfjac,info,lwa + integer ipvt(n) + double precision tol + double precision x(n),fvec(m),fjac(ldfjac,n),wa(lwa) + external fcn +c ********** +c +c subroutine lmstr1 +c +c the purpose of lmstr1 is to minimize the sum of the squares of +c m nonlinear functions in n variables by a modification of +c the levenberg-marquardt algorithm which uses minimal storage. +c this is done by using the more general least-squares solver +c lmstr. the user must provide a subroutine which calculates +c the functions and the rows of the jacobian. +c +c the subroutine statement is +c +c subroutine lmstr1(fcn,m,n,x,fvec,fjac,ldfjac,tol,info, +c ipvt,wa,lwa) +c +c where +c +c fcn is the name of the user-supplied subroutine which +c calculates the functions and the rows of the jacobian. +c fcn must be declared in an external statement in the +c user calling program, and should be written as follows. +c +c subroutine fcn(m,n,x,fvec,fjrow,iflag) +c integer m,n,iflag +c double precision x(n),fvec(m),fjrow(n) +c ---------- +c if iflag = 1 calculate the functions at x and +c return this vector in fvec. +c if iflag = i calculate the (i-1)-st row of the +c jacobian at x and return this vector in fjrow. +c ---------- +c return +c end +c +c the value of iflag should not be changed by fcn unless +c the user wants to terminate execution of lmstr1. +c in this case set iflag to a negative integer. +c +c m is a positive integer input variable set to the number +c of functions. +c +c n is a positive integer input variable set to the number +c of variables. n must not exceed m. +c +c x is an array of length n. on input x must contain +c an initial estimate of the solution vector. on output x +c contains the final estimate of the solution vector. +c +c fvec is an output array of length m which contains +c the functions evaluated at the output x. +c +c fjac is an output n by n array. the upper triangle of fjac +c contains an upper triangular matrix r such that +c +c t t t +c p *(jac *jac)*p = r *r, +c +c where p is a permutation matrix and jac is the final +c calculated jacobian. column j of p is column ipvt(j) +c (see below) of the identity matrix. the lower triangular +c part of fjac contains information generated during +c the computation of r. +c +c ldfjac is a positive integer input variable not less than n +c which specifies the leading dimension of the array fjac. +c +c tol is a nonnegative input variable. termination occurs +c when the algorithm estimates either that the relative +c error in the sum of squares is at most tol or that +c the relative error between x and the solution is at +c most tol. +c +c info is an integer output variable. if the user has +c terminated execution, info is set to the (negative) +c value of iflag. see description of fcn. otherwise, +c info is set as follows. +c +c info = 0 improper input parameters. +c +c info = 1 algorithm estimates that the relative error +c in the sum of squares is at most tol. +c +c info = 2 algorithm estimates that the relative error +c between x and the solution is at most tol. +c +c info = 3 conditions for info = 1 and info = 2 both hold. +c +c info = 4 fvec is orthogonal to the columns of the +c jacobian to machine precision. +c +c info = 5 number of calls to fcn with iflag = 1 has +c reached 100*(n+1). +c +c info = 6 tol is too small. no further reduction in +c the sum of squares is possible. +c +c info = 7 tol is too small. no further improvement in +c the approximate solution x is possible. +c +c ipvt is an integer output array of length n. ipvt +c defines a permutation matrix p such that jac*p = q*r, +c where jac is the final calculated jacobian, q is +c orthogonal (not stored), and r is upper triangular. +c column j of p is column ipvt(j) of the identity matrix. +c +c wa is a work array of length lwa. +c +c lwa is a positive integer input variable not less than 5*n+m. +c +c subprograms called +c +c user-supplied ...... fcn +c +c minpack-supplied ... lmstr +c +c argonne national laboratory. minpack project. march 1980. +c burton s. garbow, dudley v. goetschel, kenneth e. hillstrom, +c jorge j. more +c +c ********** + integer maxfev,mode,nfev,njev,nprint + double precision factor,ftol,gtol,xtol,zero + data factor,zero /1.0d2,0.0d0/ + info = 0 +c +c check the input parameters for errors. +c + if (n .le. 0 .or. m .lt. n .or. ldfjac .lt. n .or. tol .lt. zero + * .or. lwa .lt. 5*n + m) go to 10 +c +c call lmstr. +c + maxfev = 100*(n + 1) + ftol = tol + xtol = tol + gtol = zero + mode = 1 + nprint = 0 + call lmstr(fcn,m,n,x,fvec,fjac,ldfjac,ftol,xtol,gtol,maxfev, + * wa(1),mode,factor,nprint,info,nfev,njev,ipvt,wa(n+1), + * wa(2*n+1),wa(3*n+1),wa(4*n+1),wa(5*n+1)) + if (info .eq. 8) info = 4 + 10 continue + return +c +c last card of subroutine lmstr1. +c + end |