aboutsummaryrefslogtreecommitdiff
path: root/math/slalib/deuler.f
diff options
context:
space:
mode:
Diffstat (limited to 'math/slalib/deuler.f')
-rw-r--r--math/slalib/deuler.f181
1 files changed, 181 insertions, 0 deletions
diff --git a/math/slalib/deuler.f b/math/slalib/deuler.f
new file mode 100644
index 00000000..1ae50acf
--- /dev/null
+++ b/math/slalib/deuler.f
@@ -0,0 +1,181 @@
+ SUBROUTINE slDEUL (ORDER, PHI, THETA, PSI, RMAT)
+*+
+* - - - - - - -
+* D E U L
+* - - - - - - -
+*
+* Form a rotation matrix from the Euler angles - three successive
+* rotations about specified Cartesian axes (double precision)
+*
+* Given:
+* ORDER c*(*) specifies about which axes the rotations occur
+* PHI d 1st rotation (radians)
+* THETA d 2nd rotation ( " )
+* PSI d 3rd rotation ( " )
+*
+* Returned:
+* RMAT d(3,3) rotation matrix
+*
+* A rotation is positive when the reference frame rotates
+* anticlockwise as seen looking towards the origin from the
+* positive region of the specified axis.
+*
+* The characters of ORDER define which axes the three successive
+* rotations are about. A typical value is 'ZXZ', indicating that
+* RMAT is to become the direction cosine matrix corresponding to
+* rotations of the reference frame through PHI radians about the
+* old Z-axis, followed by THETA radians about the resulting X-axis,
+* then PSI radians about the resulting Z-axis.
+*
+* The axis names can be any of the following, in any order or
+* combination: X, Y, Z, uppercase or lowercase, 1, 2, 3. Normal
+* axis labelling/numbering conventions apply; the xyz (=123)
+* triad is right-handed. Thus, the 'ZXZ' example given above
+* could be written 'zxz' or '313' (or even 'ZxZ' or '3xZ'). ORDER
+* is terminated by length or by the first unrecognized character.
+*
+* Fewer than three rotations are acceptable, in which case the later
+* angle arguments are ignored. If all rotations are zero, the
+* identity matrix is produced.
+*
+* P.T.Wallace Starlink 23 May 1997
+*
+* Copyright (C) 1997 Rutherford Appleton Laboratory
+*
+* License:
+* This program is free software; you can redistribute it and/or modify
+* it under the terms of the GNU General Public License as published by
+* the Free Software Foundation; either version 2 of the License, or
+* (at your option) any later version.
+*
+* This program is distributed in the hope that it will be useful,
+* but WITHOUT ANY WARRANTY; without even the implied warranty of
+* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+* GNU General Public License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with this program (see SLA_CONDITIONS); if not, write to the
+* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+* Boston, MA 02110-1301 USA
+*
+* Copyright (C) 1995 Association of Universities for Research in Astronomy Inc.
+*-
+
+ IMPLICIT NONE
+
+ CHARACTER*(*) ORDER
+ DOUBLE PRECISION PHI,THETA,PSI,RMAT(3,3)
+
+ INTEGER J,I,L,N,K
+ DOUBLE PRECISION RESULT(3,3),ROTN(3,3),ANGLE,S,C,W,WM(3,3)
+ CHARACTER AXIS
+
+
+
+* Initialize result matrix
+ DO J=1,3
+ DO I=1,3
+ IF (I.NE.J) THEN
+ RESULT(I,J) = 0D0
+ ELSE
+ RESULT(I,J) = 1D0
+ END IF
+ END DO
+ END DO
+
+* Establish length of axis string
+ L = LEN(ORDER)
+
+* Look at each character of axis string until finished
+ DO N=1,3
+ IF (N.LE.L) THEN
+
+* Initialize rotation matrix for the current rotation
+ DO J=1,3
+ DO I=1,3
+ IF (I.NE.J) THEN
+ ROTN(I,J) = 0D0
+ ELSE
+ ROTN(I,J) = 1D0
+ END IF
+ END DO
+ END DO
+
+* Pick up the appropriate Euler angle and take sine & cosine
+ IF (N.EQ.1) THEN
+ ANGLE = PHI
+ ELSE IF (N.EQ.2) THEN
+ ANGLE = THETA
+ ELSE
+ ANGLE = PSI
+ END IF
+ S = SIN(ANGLE)
+ C = COS(ANGLE)
+
+* Identify the axis
+ AXIS = ORDER(N:N)
+ IF (AXIS.EQ.'X'.OR.
+ : AXIS.EQ.'x'.OR.
+ : AXIS.EQ.'1') THEN
+
+* Matrix for x-rotation
+ ROTN(2,2) = C
+ ROTN(2,3) = S
+ ROTN(3,2) = -S
+ ROTN(3,3) = C
+
+ ELSE IF (AXIS.EQ.'Y'.OR.
+ : AXIS.EQ.'y'.OR.
+ : AXIS.EQ.'2') THEN
+
+* Matrix for y-rotation
+ ROTN(1,1) = C
+ ROTN(1,3) = -S
+ ROTN(3,1) = S
+ ROTN(3,3) = C
+
+ ELSE IF (AXIS.EQ.'Z'.OR.
+ : AXIS.EQ.'z'.OR.
+ : AXIS.EQ.'3') THEN
+
+* Matrix for z-rotation
+ ROTN(1,1) = C
+ ROTN(1,2) = S
+ ROTN(2,1) = -S
+ ROTN(2,2) = C
+
+ ELSE
+
+* Unrecognized character - fake end of string
+ L = 0
+
+ END IF
+
+* Apply the current rotation (matrix ROTN x matrix RESULT)
+ DO I=1,3
+ DO J=1,3
+ W = 0D0
+ DO K=1,3
+ W = W+ROTN(I,K)*RESULT(K,J)
+ END DO
+ WM(I,J) = W
+ END DO
+ END DO
+ DO J=1,3
+ DO I=1,3
+ RESULT(I,J) = WM(I,J)
+ END DO
+ END DO
+
+ END IF
+
+ END DO
+
+* Copy the result
+ DO J=1,3
+ DO I=1,3
+ RMAT(I,J) = RESULT(I,J)
+ END DO
+ END DO
+
+ END