diff options
Diffstat (limited to 'math/surfit/sf_beval.x')
-rw-r--r-- | math/surfit/sf_beval.x | 143 |
1 files changed, 143 insertions, 0 deletions
diff --git a/math/surfit/sf_beval.x b/math/surfit/sf_beval.x new file mode 100644 index 00000000..301967f9 --- /dev/null +++ b/math/surfit/sf_beval.x @@ -0,0 +1,143 @@ +# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc. + +# SF_BCHEB -- Procedure to evaluate all the non-zero Chebyshev functions for +# a set of points and given order. + +procedure sf_bcheb (x, npts, order, k1, k2, basis) + +real x[npts] # array of data points +int npts # number of points +int order # order of polynomial, order = 1, constant +real k1, k2 # normalizing constants +real basis[ARB] # basis functions + +int k, bptr + +begin + bptr = 1 + do k = 1, order { + + if (k == 1) + call amovkr (1., basis, npts) + else if (k == 2) + call altar (x, basis[bptr], npts, k1, k2) + else { + call amulr (basis[1+npts], basis[bptr-npts], basis[bptr], + npts) + call amulkr (basis[bptr], 2., basis[bptr], npts) + call asubr (basis[bptr], basis[bptr-2*npts], basis[bptr], npts) + } + + bptr = bptr + npts + } +end + + +# SF_BLEG -- Procedure to evaluate all the non zero Legendre function +# for a given order and set of points. + +procedure sf_bleg (x, npts, order, k1, k2, basis) + +real x[npts] # number of data points +int npts # number of points +int order # order of polynomial, 1 is a constant +real k1, k2 # normalizing constants +real basis[ARB] # array of basis functions + +int k, bptr +real ri, ri1, ri2 + +begin + bptr = 1 + + do k = 1, order { + if (k == 1) + call amovkr (1., basis, npts) + else if (k == 2) + call altar (x, basis[bptr], npts, k1, k2) + else { + ri = k + ri1 = (2. * ri - 3.) / (ri - 1.) + ri2 = - (ri - 2.) / (ri - 1.) + call amulr (basis[1+npts], basis[bptr-npts], basis[bptr], + npts) + call awsur (basis[bptr], basis[bptr-2*npts], + basis[bptr], npts, ri1, ri2) + } + + bptr = bptr + npts + } +end + + +# SF_BSPLINE1 -- Evaluate all the non-zero spline1 functions for a set +# of points. + +procedure sf_bspline1 (x, npts, npieces, k1, k2, basis, left) + +real x[npts] # set of data points +int npts # number of points +int npieces # number of polynomial pieces minus 1 +real k1, k2 # normalizing constants +real basis[ARB] # basis functions +int left[ARB] # indices of the appropriate spline functions + +int k + +begin + call altar (x, basis[1+npts], npts, k1, k2) + call achtri (basis[1+npts], left, npts) + call aminki (left, npieces, left, npts) + + do k = 1, npts { + basis[npts+k] = basis[npts+k] - left[k] + basis[k] = 1. - basis[npts+k] + } +end + + +# SF_BSPLINE3 -- Procedure to evaluate all the non-zero basis functions +# for a cubic spline. + +procedure sf_bspline3 (x, npts, npieces, k1, k2, basis, left) + +real x[npts] # array of data points +int npts # number of data points +int npieces # number of polynomial pieces minus 1 +real k1, k2 # normalizing constants +real basis[ARB] # array of basis functions +int left[ARB] # array of indices for first non-zero spline + +int i +pointer sp, sx, tx + +begin + # allocate space + call smark (sp) + call salloc (sx, npts, TY_REAL) + call salloc (tx, npts, TY_REAL) + + # calculate the index of the first non-zero coeff + call altar (x, Memr[sx], npts, k1, k2) + call achtri (Memr[sx], left, npts) + call aminki (left, npieces, left, npts) + + # normalize x to 0 to 1 + do i = 1, npts { + Memr[sx+i-1] = Memr[sx+i-1] - left[i] + Memr[tx+i-1] = 1. - Memr[sx+i-1] + } + + # calculate the basis function + call apowkr (Memr[tx], 3, basis, npts) + do i = 1, npts { + basis[npts+i] = 1. + Memr[tx+i-1] * (3. + Memr[tx+i-1] * (3. - + 3. * Memr[tx+i-1])) + basis[2*npts+i] = 1. + Memr[sx+i-1] * (3. + Memr[sx+i-1] * (3. - + 3. * Memr[sx+i-1])) + } + call apowkr (Memr[sx], 3, basis[1+3*npts], npts) + + # release space + call sfree (sp) +end |