diff options
Diffstat (limited to 'noao/onedspec/odcombine/srcwt/generic/icsclip.x')
-rw-r--r-- | noao/onedspec/odcombine/srcwt/generic/icsclip.x | 1922 |
1 files changed, 1922 insertions, 0 deletions
diff --git a/noao/onedspec/odcombine/srcwt/generic/icsclip.x b/noao/onedspec/odcombine/srcwt/generic/icsclip.x new file mode 100644 index 00000000..a0188d72 --- /dev/null +++ b/noao/onedspec/odcombine/srcwt/generic/icsclip.x @@ -0,0 +1,1922 @@ +# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc. + +include "../icombine.h" + +define MINCLIP 3 # Mininum number of images for algorithm + + +# IC_ASIGCLIP -- Reject pixels using sigma clipping about the average +# The initial average rejects the high and low pixels. A correction for +# different scalings of the images may be made. Weights are not used. + +procedure ic_asigclips (d, m, n, scales, zeros, nimages, npts, average) + +pointer d[nimages] # Data pointers +pointer m[nimages] # Image id pointers +int n[npts] # Number of good pixels +real scales[nimages] # Scales +real zeros[nimages] # Zeros +int nimages # Number of images +int npts # Number of output points per line +real average[npts] # Average + +int i, j, k, l, jj, n1, n2, nin, nk, maxkeep +real d1, low, high, sum, a, s, r, one +data one /1.0/ +pointer sp, resid, w, wp, dp1, dp2, mp1, mp2 + +include "../icombine.com" + +begin + # If there are insufficient pixels go on to the combining + if (nkeep < 0) + maxkeep = max (0, nimages + nkeep) + else + maxkeep = min (nimages, nkeep) + if (nimages < max (MINCLIP, maxkeep+1) || dflag == D_NONE) { + docombine = true + return + } + + # Flag whether returned average needs to be recomputed. + if (dowts || combine != AVERAGE) + docombine = true + else + docombine = false + + # Save the residuals and the sigma scaling corrections if needed. + call smark (sp) + call salloc (resid, nimages+1, TY_REAL) + if (doscale1) + call salloc (w, nimages, TY_REAL) + + # Do sigma clipping. + nin = n[1] + do i = 1, npts { + k = i - 1 + n1 = n[i] + if (nkeep < 0) + maxkeep = max (0, n1 + nkeep) + else + maxkeep = min (n1, nkeep) + + # If there are not enough pixels simply compute the average. + if (n1 < max (3, maxkeep)) { + if (!docombine) { + if (n1 == 0) + average[i] = blank + else { + sum = Mems[d[1]+k] + do j = 2, n1 + sum = sum + Mems[d[j]+k] + average[i] = sum / n1 + } + } + next + } + + # Compute average with the high and low rejected. + low = Mems[d[1]+k] + high = Mems[d[2]+k] + if (low > high) { + d1 = low + low = high + high = d1 + } + sum = 0. + do j = 3, n1 { + d1 = Mems[d[j]+k] + if (d1 < low) { + sum = sum + low + low = d1 + } else if (d1 > high) { + sum = sum + high + high = d1 + } else + sum = sum + d1 + } + a = sum / (n1 - 2) + sum = sum + low + high + + # Iteratively reject pixels and compute the final average if needed. + # Compact the data and keep track of the image IDs if needed. + + repeat { + n2 = n1 + if (doscale1) { + # Compute sigma corrected for scaling. + s = 0. + wp = w - 1 + do j = 1, n1 { + dp1 = d[j] + k + mp1 = m[j] + k + wp = wp + 1 + + d1 = Mems[dp1] + l = Memi[mp1] + r = sqrt (max (one, (a + zeros[l]) / scales[l])) + s = s + ((d1 - a) / r) ** 2 + Memr[wp] = r + } + s = sqrt (s / (n1 - 1)) + + # Reject pixels. Save the residuals and data values. + wp = w - 1 + if (s > 0.) { + for (j=1; j<=n1; j=j+1) { + dp1 = d[j] + k + mp1 = m[j] + k + wp = wp + 1 + + d1 = Mems[dp1] + r = (d1 - a) / (s * Memr[wp]) + if (r < -lsigma || r > hsigma) { + Memr[resid+n1] = abs (r) + if (j < n1) { + dp2 = d[n1] + k + Mems[dp1] = Mems[dp2] + Mems[dp2] = d1 + Memr[wp] = Memr[w+n1-1] + mp2 = m[n1] + k + l = Memi[mp1] + Memi[mp1] = Memi[mp2] + Memi[mp2] = l + j = j - 1 + } + sum = sum - d1 + n1 = n1 - 1 + } + } + } + } else { + # Compute the sigma without scale correction. + s = 0. + do j = 1, n1 + s = s + (Mems[d[j]+k] - a) ** 2 + s = sqrt (s / (n1 - 1)) + + # Reject pixels. Save the residuals and data values. + if (s > 0.) { + for (j=1; j<=n1; j=j+1) { + dp1 = d[j] + k + d1 = Mems[dp1] + r = (d1 - a) / s + if (r < -lsigma || r > hsigma) { + Memr[resid+n1] = abs (r) + if (j < n1) { + dp2 = d[n1] + k + Mems[dp1] = Mems[dp2] + Mems[dp2] = d1 + if (keepids) { + mp1 = m[j] + k + mp2 = m[n1] + k + l = Memi[mp1] + Memi[mp1] = Memi[mp2] + Memi[mp2] = l + } + j = j - 1 + } + sum = sum - d1 + n1 = n1 - 1 + } + } + } + } + + # Recompute the average. + if (n1 > 1) + a = sum / n1 + } until (n1 == n2 || n1 <= max (2, maxkeep)) + + # If too many pixels are rejected add some back. + # All pixels with equal residuals are added back. + if (n1 < maxkeep) { + nk = maxkeep + if (doscale1) { + for (j=n1+1; j<=nk; j=j+1) { + dp1 = d[j] + k + mp1 = m[j] + k + r = Memr[resid+j] + jj = 0 + do l = j+1, n2 { + s = Memr[resid+l] + if (s < r + TOL) { + if (s > r - TOL) + jj = jj + 1 + else { + jj = 0 + Memr[resid+l] = r + r = s + dp2 = d[l] + k + d1 = Mems[dp1] + Mems[dp1] = Mems[dp2] + Mems[dp2] = d1 + mp2 = m[l] + k + s = Memi[mp1] + Memi[mp1] = Memi[mp2] + Memi[mp2] = s + } + } + } + sum = sum + Mems[dp1] + n1 = n1 + 1 + nk = max (nk, j+jj) + } + } else { + for (j=n1+1; j<=nk; j=j+1) { + dp1 = d[j] + k + r = Memr[resid+j] + jj = 0 + do l = j+1, n2 { + s = Memr[resid+l] + if (s < r + TOL) { + if (s > r - TOL) + jj = jj + 1 + else { + jj = 0 + Memr[resid+l] = r + r = s + dp2 = d[l] + k + d1 = Mems[dp1] + Mems[dp1] = Mems[dp2] + Mems[dp2] = d1 + if (keepids) { + mp1 = m[j] + k + mp2 = m[l] + k + s = Memi[mp1] + Memi[mp1] = Memi[mp2] + Memi[mp2] = s + } + } + } + } + sum = sum + Mems[dp1] + n1 = n1 + 1 + nk = max (nk, j+jj) + } + } + + # Recompute the average. + if (n1 > 1) + a = sum / n1 + } + + # Save the average if needed. + n[i] = n1 + if (!docombine) { + if (n1 > 0) + average[i] = a + else + average[i] = blank + } + } + + # Check if the data flag has to be reset for rejected pixels + if (dflag == D_ALL) { + do i = 1, npts { + if (n[i] != nin) { + dflag = D_MIX + break + } + } + } + + call sfree (sp) +end + + +# IC_MSIGCLIP -- Reject pixels using sigma clipping about the median + +procedure ic_msigclips (d, m, n, scales, zeros, nimages, npts, median) + +pointer d[nimages] # Data pointers +pointer m[nimages] # Image id pointers +int n[npts] # Number of good pixels +real scales[nimages] # Scales +real zeros[nimages] # Zeros +int nimages # Number of images +int npts # Number of output points per line +real median[npts] # Median + +int i, j, k, l, id, n1, n2, n3, nl, nh, nin, maxkeep +real r, s +pointer sp, resid, w, mp1, mp2 +real med, one +data one /1.0/ + +include "../icombine.com" + +begin + # If there are insufficient pixels go on to the combining + if (nkeep < 0) + maxkeep = max (0, nimages + nkeep) + else + maxkeep = min (nimages, nkeep) + if (nimages < max (MINCLIP, maxkeep+1) || dflag == D_NONE) { + docombine = true + return + } + + # Save the residuals and sigma scaling corrections if needed. + call smark (sp) + call salloc (resid, nimages+1, TY_REAL) + if (doscale1) + call salloc (w, nimages, TY_REAL) + + # Compute median and sigma and iteratively clip. + nin = n[1] + do i = 1, npts { + k = i - 1 + n1 = n[i] + if (nkeep < 0) + maxkeep = max (0, n1 + nkeep) + else + maxkeep = min (n1, nkeep) + nl = 1 + nh = n1 + + repeat { + n2 = n1 + n3 = nl + n1 / 2 + + if (n1 == 0) + med = blank + else if (mod (n1, 2) == 0) + med = (Mems[d[n3-1]+k] + Mems[d[n3]+k]) / 2. + else + med = Mems[d[n3]+k] + + if (n1 >= max (MINCLIP, maxkeep+1)) { + if (doscale1) { + # Compute the sigma with scaling correction. + s = 0. + do j = nl, nh { + l = Memi[m[j]+k] + r = sqrt (max (one, (med + zeros[l]) / scales[l])) + s = s + ((Mems[d[j]+k] - med) / r) ** 2 + Memr[w+j-1] = r + } + s = sqrt (s / (n1 - 1)) + + # Reject pixels and save the residuals. + if (s > 0.) { + for (; nl <= n2; nl = nl + 1) { + r = (med - Mems[d[nl]+k]) / (s * Memr[w+nl-1]) + if (r <= lsigma) + break + Memr[resid+nl] = r + n1 = n1 - 1 + } + for (; nh >= nl; nh = nh - 1) { + r = (Mems[d[nh]+k] - med) / (s * Memr[w+nh-1]) + if (r <= hsigma) + break + Memr[resid+nh] = r + n1 = n1 - 1 + } + } + } else { + # Compute the sigma without scaling correction. + s = 0. + do j = nl, nh + s = s + (Mems[d[j]+k] - med) ** 2 + s = sqrt (s / (n1 - 1)) + + # Reject pixels and save the residuals. + if (s > 0.) { + for (; nl <= n2; nl = nl + 1) { + r = (med - Mems[d[nl]+k]) / s + if (r <= lsigma) + break + Memr[resid+nl] = r + n1 = n1 - 1 + } + for (; nh >= nl; nh = nh - 1) { + r = (Mems[d[nh]+k] - med) / s + if (r <= hsigma) + break + Memr[resid+nh] = r + n1 = n1 - 1 + } + } + } + } + } until (n1 == n2 || n1 < max (MINCLIP, maxkeep+1)) + + # If too many pixels are rejected add some back. + # All pixels with equal residuals are added back. + while (n1 < maxkeep) { + if (nl == 1) + nh = nh + 1 + else if (nh == n[i]) + nl = nl - 1 + else { + r = Memr[resid+nl-1] + s = Memr[resid+nh+1] + if (r < s) { + nl = nl - 1 + r = r + TOL + if (s <= r) + nh = nh + 1 + if (nl > 1) { + if (Memr[resid+nl-1] <= r) + nl = nl - 1 + } + } else { + nh = nh + 1 + s = s + TOL + if (r <= s) + nl = nl - 1 + if (nh < n2) { + if (Memr[resid+nh+1] <= s) + nh = nh + 1 + } + } + } + n1 = nh - nl + 1 + } + + # Only set median and reorder if needed + n[i] = n1 + if (n1 > 0 && nl > 1 && (combine != MEDIAN || grow >= 1.)) { + j = max (nl, n1 + 1) + if (keepids) { + do l = 1, min (n1, nl-1) { + Mems[d[l]+k] = Mems[d[j]+k] + if (grow >= 1.) { + mp1 = m[l] + k + mp2 = m[j] + k + id = Memi[mp1] + Memi[mp1] = Memi[mp2] + Memi[mp2] = id + } else + Memi[m[l]+k] = Memi[m[j]+k] + j = j + 1 + } + } else { + do l = 1, min (n1, nl - 1) { + Mems[d[l]+k] = Mems[d[j]+k] + j = j + 1 + } + } + } + + if (combine == MEDIAN) + median[i] = med + } + + # Check if data flag needs to be reset for rejected pixels + if (dflag == D_ALL) { + do i = 1, npts { + if (n[i] != nin) { + dflag = D_MIX + break + } + } + } + + # Flag that the median has been computed. + if (combine == MEDIAN) + docombine = false + else + docombine = true + + call sfree (sp) +end + +# IC_ASIGCLIP -- Reject pixels using sigma clipping about the average +# The initial average rejects the high and low pixels. A correction for +# different scalings of the images may be made. Weights are not used. + +procedure ic_asigclipi (d, m, n, scales, zeros, nimages, npts, average) + +pointer d[nimages] # Data pointers +pointer m[nimages] # Image id pointers +int n[npts] # Number of good pixels +real scales[nimages] # Scales +real zeros[nimages] # Zeros +int nimages # Number of images +int npts # Number of output points per line +real average[npts] # Average + +int i, j, k, l, jj, n1, n2, nin, nk, maxkeep +real d1, low, high, sum, a, s, r, one +data one /1.0/ +pointer sp, resid, w, wp, dp1, dp2, mp1, mp2 + +include "../icombine.com" + +begin + # If there are insufficient pixels go on to the combining + if (nkeep < 0) + maxkeep = max (0, nimages + nkeep) + else + maxkeep = min (nimages, nkeep) + if (nimages < max (MINCLIP, maxkeep+1) || dflag == D_NONE) { + docombine = true + return + } + + # Flag whether returned average needs to be recomputed. + if (dowts || combine != AVERAGE) + docombine = true + else + docombine = false + + # Save the residuals and the sigma scaling corrections if needed. + call smark (sp) + call salloc (resid, nimages+1, TY_REAL) + if (doscale1) + call salloc (w, nimages, TY_REAL) + + # Do sigma clipping. + nin = n[1] + do i = 1, npts { + k = i - 1 + n1 = n[i] + if (nkeep < 0) + maxkeep = max (0, n1 + nkeep) + else + maxkeep = min (n1, nkeep) + + # If there are not enough pixels simply compute the average. + if (n1 < max (3, maxkeep)) { + if (!docombine) { + if (n1 == 0) + average[i] = blank + else { + sum = Memi[d[1]+k] + do j = 2, n1 + sum = sum + Memi[d[j]+k] + average[i] = sum / n1 + } + } + next + } + + # Compute average with the high and low rejected. + low = Memi[d[1]+k] + high = Memi[d[2]+k] + if (low > high) { + d1 = low + low = high + high = d1 + } + sum = 0. + do j = 3, n1 { + d1 = Memi[d[j]+k] + if (d1 < low) { + sum = sum + low + low = d1 + } else if (d1 > high) { + sum = sum + high + high = d1 + } else + sum = sum + d1 + } + a = sum / (n1 - 2) + sum = sum + low + high + + # Iteratively reject pixels and compute the final average if needed. + # Compact the data and keep track of the image IDs if needed. + + repeat { + n2 = n1 + if (doscale1) { + # Compute sigma corrected for scaling. + s = 0. + wp = w - 1 + do j = 1, n1 { + dp1 = d[j] + k + mp1 = m[j] + k + wp = wp + 1 + + d1 = Memi[dp1] + l = Memi[mp1] + r = sqrt (max (one, (a + zeros[l]) / scales[l])) + s = s + ((d1 - a) / r) ** 2 + Memr[wp] = r + } + s = sqrt (s / (n1 - 1)) + + # Reject pixels. Save the residuals and data values. + wp = w - 1 + if (s > 0.) { + for (j=1; j<=n1; j=j+1) { + dp1 = d[j] + k + mp1 = m[j] + k + wp = wp + 1 + + d1 = Memi[dp1] + r = (d1 - a) / (s * Memr[wp]) + if (r < -lsigma || r > hsigma) { + Memr[resid+n1] = abs (r) + if (j < n1) { + dp2 = d[n1] + k + Memi[dp1] = Memi[dp2] + Memi[dp2] = d1 + Memr[wp] = Memr[w+n1-1] + mp2 = m[n1] + k + l = Memi[mp1] + Memi[mp1] = Memi[mp2] + Memi[mp2] = l + j = j - 1 + } + sum = sum - d1 + n1 = n1 - 1 + } + } + } + } else { + # Compute the sigma without scale correction. + s = 0. + do j = 1, n1 + s = s + (Memi[d[j]+k] - a) ** 2 + s = sqrt (s / (n1 - 1)) + + # Reject pixels. Save the residuals and data values. + if (s > 0.) { + for (j=1; j<=n1; j=j+1) { + dp1 = d[j] + k + d1 = Memi[dp1] + r = (d1 - a) / s + if (r < -lsigma || r > hsigma) { + Memr[resid+n1] = abs (r) + if (j < n1) { + dp2 = d[n1] + k + Memi[dp1] = Memi[dp2] + Memi[dp2] = d1 + if (keepids) { + mp1 = m[j] + k + mp2 = m[n1] + k + l = Memi[mp1] + Memi[mp1] = Memi[mp2] + Memi[mp2] = l + } + j = j - 1 + } + sum = sum - d1 + n1 = n1 - 1 + } + } + } + } + + # Recompute the average. + if (n1 > 1) + a = sum / n1 + } until (n1 == n2 || n1 <= max (2, maxkeep)) + + # If too many pixels are rejected add some back. + # All pixels with equal residuals are added back. + if (n1 < maxkeep) { + nk = maxkeep + if (doscale1) { + for (j=n1+1; j<=nk; j=j+1) { + dp1 = d[j] + k + mp1 = m[j] + k + r = Memr[resid+j] + jj = 0 + do l = j+1, n2 { + s = Memr[resid+l] + if (s < r + TOL) { + if (s > r - TOL) + jj = jj + 1 + else { + jj = 0 + Memr[resid+l] = r + r = s + dp2 = d[l] + k + d1 = Memi[dp1] + Memi[dp1] = Memi[dp2] + Memi[dp2] = d1 + mp2 = m[l] + k + s = Memi[mp1] + Memi[mp1] = Memi[mp2] + Memi[mp2] = s + } + } + } + sum = sum + Memi[dp1] + n1 = n1 + 1 + nk = max (nk, j+jj) + } + } else { + for (j=n1+1; j<=nk; j=j+1) { + dp1 = d[j] + k + r = Memr[resid+j] + jj = 0 + do l = j+1, n2 { + s = Memr[resid+l] + if (s < r + TOL) { + if (s > r - TOL) + jj = jj + 1 + else { + jj = 0 + Memr[resid+l] = r + r = s + dp2 = d[l] + k + d1 = Memi[dp1] + Memi[dp1] = Memi[dp2] + Memi[dp2] = d1 + if (keepids) { + mp1 = m[j] + k + mp2 = m[l] + k + s = Memi[mp1] + Memi[mp1] = Memi[mp2] + Memi[mp2] = s + } + } + } + } + sum = sum + Memi[dp1] + n1 = n1 + 1 + nk = max (nk, j+jj) + } + } + + # Recompute the average. + if (n1 > 1) + a = sum / n1 + } + + # Save the average if needed. + n[i] = n1 + if (!docombine) { + if (n1 > 0) + average[i] = a + else + average[i] = blank + } + } + + # Check if the data flag has to be reset for rejected pixels + if (dflag == D_ALL) { + do i = 1, npts { + if (n[i] != nin) { + dflag = D_MIX + break + } + } + } + + call sfree (sp) +end + + +# IC_MSIGCLIP -- Reject pixels using sigma clipping about the median + +procedure ic_msigclipi (d, m, n, scales, zeros, nimages, npts, median) + +pointer d[nimages] # Data pointers +pointer m[nimages] # Image id pointers +int n[npts] # Number of good pixels +real scales[nimages] # Scales +real zeros[nimages] # Zeros +int nimages # Number of images +int npts # Number of output points per line +real median[npts] # Median + +int i, j, k, l, id, n1, n2, n3, nl, nh, nin, maxkeep +real r, s +pointer sp, resid, w, mp1, mp2 +real med, one +data one /1.0/ + +include "../icombine.com" + +begin + # If there are insufficient pixels go on to the combining + if (nkeep < 0) + maxkeep = max (0, nimages + nkeep) + else + maxkeep = min (nimages, nkeep) + if (nimages < max (MINCLIP, maxkeep+1) || dflag == D_NONE) { + docombine = true + return + } + + # Save the residuals and sigma scaling corrections if needed. + call smark (sp) + call salloc (resid, nimages+1, TY_REAL) + if (doscale1) + call salloc (w, nimages, TY_REAL) + + # Compute median and sigma and iteratively clip. + nin = n[1] + do i = 1, npts { + k = i - 1 + n1 = n[i] + if (nkeep < 0) + maxkeep = max (0, n1 + nkeep) + else + maxkeep = min (n1, nkeep) + nl = 1 + nh = n1 + + repeat { + n2 = n1 + n3 = nl + n1 / 2 + + if (n1 == 0) + med = blank + else if (mod (n1, 2) == 0) + med = (Memi[d[n3-1]+k] + Memi[d[n3]+k]) / 2. + else + med = Memi[d[n3]+k] + + if (n1 >= max (MINCLIP, maxkeep+1)) { + if (doscale1) { + # Compute the sigma with scaling correction. + s = 0. + do j = nl, nh { + l = Memi[m[j]+k] + r = sqrt (max (one, (med + zeros[l]) / scales[l])) + s = s + ((Memi[d[j]+k] - med) / r) ** 2 + Memr[w+j-1] = r + } + s = sqrt (s / (n1 - 1)) + + # Reject pixels and save the residuals. + if (s > 0.) { + for (; nl <= n2; nl = nl + 1) { + r = (med - Memi[d[nl]+k]) / (s * Memr[w+nl-1]) + if (r <= lsigma) + break + Memr[resid+nl] = r + n1 = n1 - 1 + } + for (; nh >= nl; nh = nh - 1) { + r = (Memi[d[nh]+k] - med) / (s * Memr[w+nh-1]) + if (r <= hsigma) + break + Memr[resid+nh] = r + n1 = n1 - 1 + } + } + } else { + # Compute the sigma without scaling correction. + s = 0. + do j = nl, nh + s = s + (Memi[d[j]+k] - med) ** 2 + s = sqrt (s / (n1 - 1)) + + # Reject pixels and save the residuals. + if (s > 0.) { + for (; nl <= n2; nl = nl + 1) { + r = (med - Memi[d[nl]+k]) / s + if (r <= lsigma) + break + Memr[resid+nl] = r + n1 = n1 - 1 + } + for (; nh >= nl; nh = nh - 1) { + r = (Memi[d[nh]+k] - med) / s + if (r <= hsigma) + break + Memr[resid+nh] = r + n1 = n1 - 1 + } + } + } + } + } until (n1 == n2 || n1 < max (MINCLIP, maxkeep+1)) + + # If too many pixels are rejected add some back. + # All pixels with equal residuals are added back. + while (n1 < maxkeep) { + if (nl == 1) + nh = nh + 1 + else if (nh == n[i]) + nl = nl - 1 + else { + r = Memr[resid+nl-1] + s = Memr[resid+nh+1] + if (r < s) { + nl = nl - 1 + r = r + TOL + if (s <= r) + nh = nh + 1 + if (nl > 1) { + if (Memr[resid+nl-1] <= r) + nl = nl - 1 + } + } else { + nh = nh + 1 + s = s + TOL + if (r <= s) + nl = nl - 1 + if (nh < n2) { + if (Memr[resid+nh+1] <= s) + nh = nh + 1 + } + } + } + n1 = nh - nl + 1 + } + + # Only set median and reorder if needed + n[i] = n1 + if (n1 > 0 && nl > 1 && (combine != MEDIAN || grow >= 1.)) { + j = max (nl, n1 + 1) + if (keepids) { + do l = 1, min (n1, nl-1) { + Memi[d[l]+k] = Memi[d[j]+k] + if (grow >= 1.) { + mp1 = m[l] + k + mp2 = m[j] + k + id = Memi[mp1] + Memi[mp1] = Memi[mp2] + Memi[mp2] = id + } else + Memi[m[l]+k] = Memi[m[j]+k] + j = j + 1 + } + } else { + do l = 1, min (n1, nl - 1) { + Memi[d[l]+k] = Memi[d[j]+k] + j = j + 1 + } + } + } + + if (combine == MEDIAN) + median[i] = med + } + + # Check if data flag needs to be reset for rejected pixels + if (dflag == D_ALL) { + do i = 1, npts { + if (n[i] != nin) { + dflag = D_MIX + break + } + } + } + + # Flag that the median has been computed. + if (combine == MEDIAN) + docombine = false + else + docombine = true + + call sfree (sp) +end + +# IC_ASIGCLIP -- Reject pixels using sigma clipping about the average +# The initial average rejects the high and low pixels. A correction for +# different scalings of the images may be made. Weights are not used. + +procedure ic_asigclipr (d, m, n, scales, zeros, nimages, npts, average) + +pointer d[nimages] # Data pointers +pointer m[nimages] # Image id pointers +int n[npts] # Number of good pixels +real scales[nimages] # Scales +real zeros[nimages] # Zeros +int nimages # Number of images +int npts # Number of output points per line +real average[npts] # Average + +int i, j, k, l, jj, n1, n2, nin, nk, maxkeep +real d1, low, high, sum, a, s, r, one +data one /1.0/ +pointer sp, resid, w, wp, dp1, dp2, mp1, mp2 + +include "../icombine.com" + +begin + # If there are insufficient pixels go on to the combining + if (nkeep < 0) + maxkeep = max (0, nimages + nkeep) + else + maxkeep = min (nimages, nkeep) + if (nimages < max (MINCLIP, maxkeep+1) || dflag == D_NONE) { + docombine = true + return + } + + # Flag whether returned average needs to be recomputed. + if (dowts || combine != AVERAGE) + docombine = true + else + docombine = false + + # Save the residuals and the sigma scaling corrections if needed. + call smark (sp) + call salloc (resid, nimages+1, TY_REAL) + if (doscale1) + call salloc (w, nimages, TY_REAL) + + # Do sigma clipping. + nin = n[1] + do i = 1, npts { + k = i - 1 + n1 = n[i] + if (nkeep < 0) + maxkeep = max (0, n1 + nkeep) + else + maxkeep = min (n1, nkeep) + + # If there are not enough pixels simply compute the average. + if (n1 < max (3, maxkeep)) { + if (!docombine) { + if (n1 == 0) + average[i] = blank + else { + sum = Memr[d[1]+k] + do j = 2, n1 + sum = sum + Memr[d[j]+k] + average[i] = sum / n1 + } + } + next + } + + # Compute average with the high and low rejected. + low = Memr[d[1]+k] + high = Memr[d[2]+k] + if (low > high) { + d1 = low + low = high + high = d1 + } + sum = 0. + do j = 3, n1 { + d1 = Memr[d[j]+k] + if (d1 < low) { + sum = sum + low + low = d1 + } else if (d1 > high) { + sum = sum + high + high = d1 + } else + sum = sum + d1 + } + a = sum / (n1 - 2) + sum = sum + low + high + + # Iteratively reject pixels and compute the final average if needed. + # Compact the data and keep track of the image IDs if needed. + + repeat { + n2 = n1 + if (doscale1) { + # Compute sigma corrected for scaling. + s = 0. + wp = w - 1 + do j = 1, n1 { + dp1 = d[j] + k + mp1 = m[j] + k + wp = wp + 1 + + d1 = Memr[dp1] + l = Memi[mp1] + r = sqrt (max (one, (a + zeros[l]) / scales[l])) + s = s + ((d1 - a) / r) ** 2 + Memr[wp] = r + } + s = sqrt (s / (n1 - 1)) + + # Reject pixels. Save the residuals and data values. + wp = w - 1 + if (s > 0.) { + for (j=1; j<=n1; j=j+1) { + dp1 = d[j] + k + mp1 = m[j] + k + wp = wp + 1 + + d1 = Memr[dp1] + r = (d1 - a) / (s * Memr[wp]) + if (r < -lsigma || r > hsigma) { + Memr[resid+n1] = abs (r) + if (j < n1) { + dp2 = d[n1] + k + Memr[dp1] = Memr[dp2] + Memr[dp2] = d1 + Memr[wp] = Memr[w+n1-1] + mp2 = m[n1] + k + l = Memi[mp1] + Memi[mp1] = Memi[mp2] + Memi[mp2] = l + j = j - 1 + } + sum = sum - d1 + n1 = n1 - 1 + } + } + } + } else { + # Compute the sigma without scale correction. + s = 0. + do j = 1, n1 + s = s + (Memr[d[j]+k] - a) ** 2 + s = sqrt (s / (n1 - 1)) + + # Reject pixels. Save the residuals and data values. + if (s > 0.) { + for (j=1; j<=n1; j=j+1) { + dp1 = d[j] + k + d1 = Memr[dp1] + r = (d1 - a) / s + if (r < -lsigma || r > hsigma) { + Memr[resid+n1] = abs (r) + if (j < n1) { + dp2 = d[n1] + k + Memr[dp1] = Memr[dp2] + Memr[dp2] = d1 + if (keepids) { + mp1 = m[j] + k + mp2 = m[n1] + k + l = Memi[mp1] + Memi[mp1] = Memi[mp2] + Memi[mp2] = l + } + j = j - 1 + } + sum = sum - d1 + n1 = n1 - 1 + } + } + } + } + + # Recompute the average. + if (n1 > 1) + a = sum / n1 + } until (n1 == n2 || n1 <= max (2, maxkeep)) + + # If too many pixels are rejected add some back. + # All pixels with equal residuals are added back. + if (n1 < maxkeep) { + nk = maxkeep + if (doscale1) { + for (j=n1+1; j<=nk; j=j+1) { + dp1 = d[j] + k + mp1 = m[j] + k + r = Memr[resid+j] + jj = 0 + do l = j+1, n2 { + s = Memr[resid+l] + if (s < r + TOL) { + if (s > r - TOL) + jj = jj + 1 + else { + jj = 0 + Memr[resid+l] = r + r = s + dp2 = d[l] + k + d1 = Memr[dp1] + Memr[dp1] = Memr[dp2] + Memr[dp2] = d1 + mp2 = m[l] + k + s = Memi[mp1] + Memi[mp1] = Memi[mp2] + Memi[mp2] = s + } + } + } + sum = sum + Memr[dp1] + n1 = n1 + 1 + nk = max (nk, j+jj) + } + } else { + for (j=n1+1; j<=nk; j=j+1) { + dp1 = d[j] + k + r = Memr[resid+j] + jj = 0 + do l = j+1, n2 { + s = Memr[resid+l] + if (s < r + TOL) { + if (s > r - TOL) + jj = jj + 1 + else { + jj = 0 + Memr[resid+l] = r + r = s + dp2 = d[l] + k + d1 = Memr[dp1] + Memr[dp1] = Memr[dp2] + Memr[dp2] = d1 + if (keepids) { + mp1 = m[j] + k + mp2 = m[l] + k + s = Memi[mp1] + Memi[mp1] = Memi[mp2] + Memi[mp2] = s + } + } + } + } + sum = sum + Memr[dp1] + n1 = n1 + 1 + nk = max (nk, j+jj) + } + } + + # Recompute the average. + if (n1 > 1) + a = sum / n1 + } + + # Save the average if needed. + n[i] = n1 + if (!docombine) { + if (n1 > 0) + average[i] = a + else + average[i] = blank + } + } + + # Check if the data flag has to be reset for rejected pixels + if (dflag == D_ALL) { + do i = 1, npts { + if (n[i] != nin) { + dflag = D_MIX + break + } + } + } + + call sfree (sp) +end + + +# IC_MSIGCLIP -- Reject pixels using sigma clipping about the median + +procedure ic_msigclipr (d, m, n, scales, zeros, nimages, npts, median) + +pointer d[nimages] # Data pointers +pointer m[nimages] # Image id pointers +int n[npts] # Number of good pixels +real scales[nimages] # Scales +real zeros[nimages] # Zeros +int nimages # Number of images +int npts # Number of output points per line +real median[npts] # Median + +int i, j, k, l, id, n1, n2, n3, nl, nh, nin, maxkeep +real r, s +pointer sp, resid, w, mp1, mp2 +real med, one +data one /1.0/ + +include "../icombine.com" + +begin + # If there are insufficient pixels go on to the combining + if (nkeep < 0) + maxkeep = max (0, nimages + nkeep) + else + maxkeep = min (nimages, nkeep) + if (nimages < max (MINCLIP, maxkeep+1) || dflag == D_NONE) { + docombine = true + return + } + + # Save the residuals and sigma scaling corrections if needed. + call smark (sp) + call salloc (resid, nimages+1, TY_REAL) + if (doscale1) + call salloc (w, nimages, TY_REAL) + + # Compute median and sigma and iteratively clip. + nin = n[1] + do i = 1, npts { + k = i - 1 + n1 = n[i] + if (nkeep < 0) + maxkeep = max (0, n1 + nkeep) + else + maxkeep = min (n1, nkeep) + nl = 1 + nh = n1 + + repeat { + n2 = n1 + n3 = nl + n1 / 2 + + if (n1 == 0) + med = blank + else if (mod (n1, 2) == 0) + med = (Memr[d[n3-1]+k] + Memr[d[n3]+k]) / 2. + else + med = Memr[d[n3]+k] + + if (n1 >= max (MINCLIP, maxkeep+1)) { + if (doscale1) { + # Compute the sigma with scaling correction. + s = 0. + do j = nl, nh { + l = Memi[m[j]+k] + r = sqrt (max (one, (med + zeros[l]) / scales[l])) + s = s + ((Memr[d[j]+k] - med) / r) ** 2 + Memr[w+j-1] = r + } + s = sqrt (s / (n1 - 1)) + + # Reject pixels and save the residuals. + if (s > 0.) { + for (; nl <= n2; nl = nl + 1) { + r = (med - Memr[d[nl]+k]) / (s * Memr[w+nl-1]) + if (r <= lsigma) + break + Memr[resid+nl] = r + n1 = n1 - 1 + } + for (; nh >= nl; nh = nh - 1) { + r = (Memr[d[nh]+k] - med) / (s * Memr[w+nh-1]) + if (r <= hsigma) + break + Memr[resid+nh] = r + n1 = n1 - 1 + } + } + } else { + # Compute the sigma without scaling correction. + s = 0. + do j = nl, nh + s = s + (Memr[d[j]+k] - med) ** 2 + s = sqrt (s / (n1 - 1)) + + # Reject pixels and save the residuals. + if (s > 0.) { + for (; nl <= n2; nl = nl + 1) { + r = (med - Memr[d[nl]+k]) / s + if (r <= lsigma) + break + Memr[resid+nl] = r + n1 = n1 - 1 + } + for (; nh >= nl; nh = nh - 1) { + r = (Memr[d[nh]+k] - med) / s + if (r <= hsigma) + break + Memr[resid+nh] = r + n1 = n1 - 1 + } + } + } + } + } until (n1 == n2 || n1 < max (MINCLIP, maxkeep+1)) + + # If too many pixels are rejected add some back. + # All pixels with equal residuals are added back. + while (n1 < maxkeep) { + if (nl == 1) + nh = nh + 1 + else if (nh == n[i]) + nl = nl - 1 + else { + r = Memr[resid+nl-1] + s = Memr[resid+nh+1] + if (r < s) { + nl = nl - 1 + r = r + TOL + if (s <= r) + nh = nh + 1 + if (nl > 1) { + if (Memr[resid+nl-1] <= r) + nl = nl - 1 + } + } else { + nh = nh + 1 + s = s + TOL + if (r <= s) + nl = nl - 1 + if (nh < n2) { + if (Memr[resid+nh+1] <= s) + nh = nh + 1 + } + } + } + n1 = nh - nl + 1 + } + + # Only set median and reorder if needed + n[i] = n1 + if (n1 > 0 && nl > 1 && (combine != MEDIAN || grow >= 1.)) { + j = max (nl, n1 + 1) + if (keepids) { + do l = 1, min (n1, nl-1) { + Memr[d[l]+k] = Memr[d[j]+k] + if (grow >= 1.) { + mp1 = m[l] + k + mp2 = m[j] + k + id = Memi[mp1] + Memi[mp1] = Memi[mp2] + Memi[mp2] = id + } else + Memi[m[l]+k] = Memi[m[j]+k] + j = j + 1 + } + } else { + do l = 1, min (n1, nl - 1) { + Memr[d[l]+k] = Memr[d[j]+k] + j = j + 1 + } + } + } + + if (combine == MEDIAN) + median[i] = med + } + + # Check if data flag needs to be reset for rejected pixels + if (dflag == D_ALL) { + do i = 1, npts { + if (n[i] != nin) { + dflag = D_MIX + break + } + } + } + + # Flag that the median has been computed. + if (combine == MEDIAN) + docombine = false + else + docombine = true + + call sfree (sp) +end + +# IC_ASIGCLIP -- Reject pixels using sigma clipping about the average +# The initial average rejects the high and low pixels. A correction for +# different scalings of the images may be made. Weights are not used. + +procedure ic_asigclipd (d, m, n, scales, zeros, nimages, npts, average) + +pointer d[nimages] # Data pointers +pointer m[nimages] # Image id pointers +int n[npts] # Number of good pixels +real scales[nimages] # Scales +real zeros[nimages] # Zeros +int nimages # Number of images +int npts # Number of output points per line +double average[npts] # Average + +int i, j, k, l, jj, n1, n2, nin, nk, maxkeep +double d1, low, high, sum, a, s, r, one +data one /1.0D0/ +pointer sp, resid, w, wp, dp1, dp2, mp1, mp2 + +include "../icombine.com" + +begin + # If there are insufficient pixels go on to the combining + if (nkeep < 0) + maxkeep = max (0, nimages + nkeep) + else + maxkeep = min (nimages, nkeep) + if (nimages < max (MINCLIP, maxkeep+1) || dflag == D_NONE) { + docombine = true + return + } + + # Flag whether returned average needs to be recomputed. + if (dowts || combine != AVERAGE) + docombine = true + else + docombine = false + + # Save the residuals and the sigma scaling corrections if needed. + call smark (sp) + call salloc (resid, nimages+1, TY_REAL) + if (doscale1) + call salloc (w, nimages, TY_REAL) + + # Do sigma clipping. + nin = n[1] + do i = 1, npts { + k = i - 1 + n1 = n[i] + if (nkeep < 0) + maxkeep = max (0, n1 + nkeep) + else + maxkeep = min (n1, nkeep) + + # If there are not enough pixels simply compute the average. + if (n1 < max (3, maxkeep)) { + if (!docombine) { + if (n1 == 0) + average[i] = blank + else { + sum = Memd[d[1]+k] + do j = 2, n1 + sum = sum + Memd[d[j]+k] + average[i] = sum / n1 + } + } + next + } + + # Compute average with the high and low rejected. + low = Memd[d[1]+k] + high = Memd[d[2]+k] + if (low > high) { + d1 = low + low = high + high = d1 + } + sum = 0. + do j = 3, n1 { + d1 = Memd[d[j]+k] + if (d1 < low) { + sum = sum + low + low = d1 + } else if (d1 > high) { + sum = sum + high + high = d1 + } else + sum = sum + d1 + } + a = sum / (n1 - 2) + sum = sum + low + high + + # Iteratively reject pixels and compute the final average if needed. + # Compact the data and keep track of the image IDs if needed. + + repeat { + n2 = n1 + if (doscale1) { + # Compute sigma corrected for scaling. + s = 0. + wp = w - 1 + do j = 1, n1 { + dp1 = d[j] + k + mp1 = m[j] + k + wp = wp + 1 + + d1 = Memd[dp1] + l = Memi[mp1] + r = sqrt (max (one, (a + zeros[l]) / scales[l])) + s = s + ((d1 - a) / r) ** 2 + Memr[wp] = r + } + s = sqrt (s / (n1 - 1)) + + # Reject pixels. Save the residuals and data values. + wp = w - 1 + if (s > 0.) { + for (j=1; j<=n1; j=j+1) { + dp1 = d[j] + k + mp1 = m[j] + k + wp = wp + 1 + + d1 = Memd[dp1] + r = (d1 - a) / (s * Memr[wp]) + if (r < -lsigma || r > hsigma) { + Memr[resid+n1] = abs (r) + if (j < n1) { + dp2 = d[n1] + k + Memd[dp1] = Memd[dp2] + Memd[dp2] = d1 + Memr[wp] = Memr[w+n1-1] + mp2 = m[n1] + k + l = Memi[mp1] + Memi[mp1] = Memi[mp2] + Memi[mp2] = l + j = j - 1 + } + sum = sum - d1 + n1 = n1 - 1 + } + } + } + } else { + # Compute the sigma without scale correction. + s = 0. + do j = 1, n1 + s = s + (Memd[d[j]+k] - a) ** 2 + s = sqrt (s / (n1 - 1)) + + # Reject pixels. Save the residuals and data values. + if (s > 0.) { + for (j=1; j<=n1; j=j+1) { + dp1 = d[j] + k + d1 = Memd[dp1] + r = (d1 - a) / s + if (r < -lsigma || r > hsigma) { + Memr[resid+n1] = abs (r) + if (j < n1) { + dp2 = d[n1] + k + Memd[dp1] = Memd[dp2] + Memd[dp2] = d1 + if (keepids) { + mp1 = m[j] + k + mp2 = m[n1] + k + l = Memi[mp1] + Memi[mp1] = Memi[mp2] + Memi[mp2] = l + } + j = j - 1 + } + sum = sum - d1 + n1 = n1 - 1 + } + } + } + } + + # Recompute the average. + if (n1 > 1) + a = sum / n1 + } until (n1 == n2 || n1 <= max (2, maxkeep)) + + # If too many pixels are rejected add some back. + # All pixels with equal residuals are added back. + if (n1 < maxkeep) { + nk = maxkeep + if (doscale1) { + for (j=n1+1; j<=nk; j=j+1) { + dp1 = d[j] + k + mp1 = m[j] + k + r = Memr[resid+j] + jj = 0 + do l = j+1, n2 { + s = Memr[resid+l] + if (s < r + TOL) { + if (s > r - TOL) + jj = jj + 1 + else { + jj = 0 + Memr[resid+l] = r + r = s + dp2 = d[l] + k + d1 = Memd[dp1] + Memd[dp1] = Memd[dp2] + Memd[dp2] = d1 + mp2 = m[l] + k + s = Memi[mp1] + Memi[mp1] = Memi[mp2] + Memi[mp2] = s + } + } + } + sum = sum + Memd[dp1] + n1 = n1 + 1 + nk = max (nk, j+jj) + } + } else { + for (j=n1+1; j<=nk; j=j+1) { + dp1 = d[j] + k + r = Memr[resid+j] + jj = 0 + do l = j+1, n2 { + s = Memr[resid+l] + if (s < r + TOL) { + if (s > r - TOL) + jj = jj + 1 + else { + jj = 0 + Memr[resid+l] = r + r = s + dp2 = d[l] + k + d1 = Memd[dp1] + Memd[dp1] = Memd[dp2] + Memd[dp2] = d1 + if (keepids) { + mp1 = m[j] + k + mp2 = m[l] + k + s = Memi[mp1] + Memi[mp1] = Memi[mp2] + Memi[mp2] = s + } + } + } + } + sum = sum + Memd[dp1] + n1 = n1 + 1 + nk = max (nk, j+jj) + } + } + + # Recompute the average. + if (n1 > 1) + a = sum / n1 + } + + # Save the average if needed. + n[i] = n1 + if (!docombine) { + if (n1 > 0) + average[i] = a + else + average[i] = blank + } + } + + # Check if the data flag has to be reset for rejected pixels + if (dflag == D_ALL) { + do i = 1, npts { + if (n[i] != nin) { + dflag = D_MIX + break + } + } + } + + call sfree (sp) +end + + +# IC_MSIGCLIP -- Reject pixels using sigma clipping about the median + +procedure ic_msigclipd (d, m, n, scales, zeros, nimages, npts, median) + +pointer d[nimages] # Data pointers +pointer m[nimages] # Image id pointers +int n[npts] # Number of good pixels +real scales[nimages] # Scales +real zeros[nimages] # Zeros +int nimages # Number of images +int npts # Number of output points per line +double median[npts] # Median + +int i, j, k, l, id, n1, n2, n3, nl, nh, nin, maxkeep +real r, s +pointer sp, resid, w, mp1, mp2 +double med, one +data one /1.0D0/ + +include "../icombine.com" + +begin + # If there are insufficient pixels go on to the combining + if (nkeep < 0) + maxkeep = max (0, nimages + nkeep) + else + maxkeep = min (nimages, nkeep) + if (nimages < max (MINCLIP, maxkeep+1) || dflag == D_NONE) { + docombine = true + return + } + + # Save the residuals and sigma scaling corrections if needed. + call smark (sp) + call salloc (resid, nimages+1, TY_REAL) + if (doscale1) + call salloc (w, nimages, TY_REAL) + + # Compute median and sigma and iteratively clip. + nin = n[1] + do i = 1, npts { + k = i - 1 + n1 = n[i] + if (nkeep < 0) + maxkeep = max (0, n1 + nkeep) + else + maxkeep = min (n1, nkeep) + nl = 1 + nh = n1 + + repeat { + n2 = n1 + n3 = nl + n1 / 2 + + if (n1 == 0) + med = blank + else if (mod (n1, 2) == 0) + med = (Memd[d[n3-1]+k] + Memd[d[n3]+k]) / 2. + else + med = Memd[d[n3]+k] + + if (n1 >= max (MINCLIP, maxkeep+1)) { + if (doscale1) { + # Compute the sigma with scaling correction. + s = 0. + do j = nl, nh { + l = Memi[m[j]+k] + r = sqrt (max (one, (med + zeros[l]) / scales[l])) + s = s + ((Memd[d[j]+k] - med) / r) ** 2 + Memr[w+j-1] = r + } + s = sqrt (s / (n1 - 1)) + + # Reject pixels and save the residuals. + if (s > 0.) { + for (; nl <= n2; nl = nl + 1) { + r = (med - Memd[d[nl]+k]) / (s * Memr[w+nl-1]) + if (r <= lsigma) + break + Memr[resid+nl] = r + n1 = n1 - 1 + } + for (; nh >= nl; nh = nh - 1) { + r = (Memd[d[nh]+k] - med) / (s * Memr[w+nh-1]) + if (r <= hsigma) + break + Memr[resid+nh] = r + n1 = n1 - 1 + } + } + } else { + # Compute the sigma without scaling correction. + s = 0. + do j = nl, nh + s = s + (Memd[d[j]+k] - med) ** 2 + s = sqrt (s / (n1 - 1)) + + # Reject pixels and save the residuals. + if (s > 0.) { + for (; nl <= n2; nl = nl + 1) { + r = (med - Memd[d[nl]+k]) / s + if (r <= lsigma) + break + Memr[resid+nl] = r + n1 = n1 - 1 + } + for (; nh >= nl; nh = nh - 1) { + r = (Memd[d[nh]+k] - med) / s + if (r <= hsigma) + break + Memr[resid+nh] = r + n1 = n1 - 1 + } + } + } + } + } until (n1 == n2 || n1 < max (MINCLIP, maxkeep+1)) + + # If too many pixels are rejected add some back. + # All pixels with equal residuals are added back. + while (n1 < maxkeep) { + if (nl == 1) + nh = nh + 1 + else if (nh == n[i]) + nl = nl - 1 + else { + r = Memr[resid+nl-1] + s = Memr[resid+nh+1] + if (r < s) { + nl = nl - 1 + r = r + TOL + if (s <= r) + nh = nh + 1 + if (nl > 1) { + if (Memr[resid+nl-1] <= r) + nl = nl - 1 + } + } else { + nh = nh + 1 + s = s + TOL + if (r <= s) + nl = nl - 1 + if (nh < n2) { + if (Memr[resid+nh+1] <= s) + nh = nh + 1 + } + } + } + n1 = nh - nl + 1 + } + + # Only set median and reorder if needed + n[i] = n1 + if (n1 > 0 && nl > 1 && (combine != MEDIAN || grow >= 1.)) { + j = max (nl, n1 + 1) + if (keepids) { + do l = 1, min (n1, nl-1) { + Memd[d[l]+k] = Memd[d[j]+k] + if (grow >= 1.) { + mp1 = m[l] + k + mp2 = m[j] + k + id = Memi[mp1] + Memi[mp1] = Memi[mp2] + Memi[mp2] = id + } else + Memi[m[l]+k] = Memi[m[j]+k] + j = j + 1 + } + } else { + do l = 1, min (n1, nl - 1) { + Memd[d[l]+k] = Memd[d[j]+k] + j = j + 1 + } + } + } + + if (combine == MEDIAN) + median[i] = med + } + + # Check if data flag needs to be reset for rejected pixels + if (dflag == D_ALL) { + do i = 1, npts { + if (n[i] != nin) { + dflag = D_MIX + break + } + } + } + + # Flag that the median has been computed. + if (combine == MEDIAN) + docombine = false + else + docombine = true + + call sfree (sp) +end |