diff options
Diffstat (limited to 'pkg/images/imutil/src/generic/imadiv.x')
-rw-r--r-- | pkg/images/imutil/src/generic/imadiv.x | 347 |
1 files changed, 347 insertions, 0 deletions
diff --git a/pkg/images/imutil/src/generic/imadiv.x b/pkg/images/imutil/src/generic/imadiv.x new file mode 100644 index 00000000..1de8b194 --- /dev/null +++ b/pkg/images/imutil/src/generic/imadiv.x @@ -0,0 +1,347 @@ +# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc. + +include <imhdr.h> + +# IMA_DIV -- Image arithmetic division. + + +procedure ima_divs (im_a, im_b, im_c, a, b, c) + +pointer im_a, im_b, im_c +short a, b, c + +int len +pointer im[3], buf[3] +long v[IM_MAXDIM, 3] + +int ima_nls() +short ima_efncs() +extern ima_efncs + +short divzero +common /imadcoms/ divzero + +begin + # Loop through all of the image lines. + divzero = c + im[1] = im_c + len = IM_LEN (im[1], 1) + call amovkl (long(1), v, 3 * IM_MAXDIM) + + # If imagea is constant then read imageb and do a vector + # reciprical to imagec. + if (im_a == NULL) { + im[2] = im_b + while (ima_nls (im, buf, v, 2) != EOF) + call arczs (a, Mems[buf[2]], Mems[buf[1]], len, + ima_efncs) + + # If imageb is constant then read imagea. If the constant + # is 1 do a vector move to imagec otherwise do a vector/scalar + # divide to imagec. + } else if (im_b == NULL) { + im[2] = im_a + while (ima_nls (im, buf, v, 2) != EOF) { + if (b == 0) + call amovks (divzero, Mems[buf[1]], len) + else if (b == 1) + call amovs (Mems[buf[2]], Mems[buf[1]], len) + else + call adivks (Mems[buf[2]], b, Mems[buf[1]], len) + } + + # Read imagea and imageb and do the vector divide to imagec. + } else { + im[2] = im_a + im[3] = im_b + while (ima_nls (im, buf, v, 3) != EOF) + call advzs (Mems[buf[2]], Mems[buf[3]], Mems[buf[1]], + len, ima_efncs) + } +end + + +# IMA_EFNC -- Error function for division by zero. + +short procedure ima_efncs (a) + +short a +short divzero +common /imadcoms/ divzero + +begin + return (divzero) +end + +procedure ima_divi (im_a, im_b, im_c, a, b, c) + +pointer im_a, im_b, im_c +int a, b, c + +int len +pointer im[3], buf[3] +long v[IM_MAXDIM, 3] + +int ima_nli() +int ima_efnci() +extern ima_efnci + +int divzero +common /imadcomi/ divzero + +begin + # Loop through all of the image lines. + divzero = c + im[1] = im_c + len = IM_LEN (im[1], 1) + call amovkl (long(1), v, 3 * IM_MAXDIM) + + # If imagea is constant then read imageb and do a vector + # reciprical to imagec. + if (im_a == NULL) { + im[2] = im_b + while (ima_nli (im, buf, v, 2) != EOF) + call arczi (a, Memi[buf[2]], Memi[buf[1]], len, + ima_efnci) + + # If imageb is constant then read imagea. If the constant + # is 1 do a vector move to imagec otherwise do a vector/scalar + # divide to imagec. + } else if (im_b == NULL) { + im[2] = im_a + while (ima_nli (im, buf, v, 2) != EOF) { + if (b == 0) + call amovki (divzero, Memi[buf[1]], len) + else if (b == 1) + call amovi (Memi[buf[2]], Memi[buf[1]], len) + else + call adivki (Memi[buf[2]], b, Memi[buf[1]], len) + } + + # Read imagea and imageb and do the vector divide to imagec. + } else { + im[2] = im_a + im[3] = im_b + while (ima_nli (im, buf, v, 3) != EOF) + call advzi (Memi[buf[2]], Memi[buf[3]], Memi[buf[1]], + len, ima_efnci) + } +end + + +# IMA_EFNC -- Error function for division by zero. + +int procedure ima_efnci (a) + +int a +int divzero +common /imadcomi/ divzero + +begin + return (divzero) +end + +procedure ima_divl (im_a, im_b, im_c, a, b, c) + +pointer im_a, im_b, im_c +long a, b, c + +int len +pointer im[3], buf[3] +long v[IM_MAXDIM, 3] + +int ima_nll() +long ima_efncl() +extern ima_efncl + +long divzero +common /imadcoml/ divzero + +begin + # Loop through all of the image lines. + divzero = c + im[1] = im_c + len = IM_LEN (im[1], 1) + call amovkl (long(1), v, 3 * IM_MAXDIM) + + # If imagea is constant then read imageb and do a vector + # reciprical to imagec. + if (im_a == NULL) { + im[2] = im_b + while (ima_nll (im, buf, v, 2) != EOF) + call arczl (a, Meml[buf[2]], Meml[buf[1]], len, + ima_efncl) + + # If imageb is constant then read imagea. If the constant + # is 1 do a vector move to imagec otherwise do a vector/scalar + # divide to imagec. + } else if (im_b == NULL) { + im[2] = im_a + while (ima_nll (im, buf, v, 2) != EOF) { + if (b == 0) + call amovkl (divzero, Meml[buf[1]], len) + else if (b == 1) + call amovl (Meml[buf[2]], Meml[buf[1]], len) + else + call adivkl (Meml[buf[2]], b, Meml[buf[1]], len) + } + + # Read imagea and imageb and do the vector divide to imagec. + } else { + im[2] = im_a + im[3] = im_b + while (ima_nll (im, buf, v, 3) != EOF) + call advzl (Meml[buf[2]], Meml[buf[3]], Meml[buf[1]], + len, ima_efncl) + } +end + + +# IMA_EFNC -- Error function for division by zero. + +long procedure ima_efncl (a) + +long a +long divzero +common /imadcoml/ divzero + +begin + return (divzero) +end + +procedure ima_divr (im_a, im_b, im_c, a, b, c) + +pointer im_a, im_b, im_c +real a, b, c + +int len +pointer im[3], buf[3] +long v[IM_MAXDIM, 3] + +int ima_nlr() +real ima_efncr() +extern ima_efncr + +real divzero +common /imadcomr/ divzero + +begin + # Loop through all of the image lines. + divzero = c + im[1] = im_c + len = IM_LEN (im[1], 1) + call amovkl (long(1), v, 3 * IM_MAXDIM) + + # If imagea is constant then read imageb and do a vector + # reciprical to imagec. + if (im_a == NULL) { + im[2] = im_b + while (ima_nlr (im, buf, v, 2) != EOF) + call arczr (a, Memr[buf[2]], Memr[buf[1]], len, + ima_efncr) + + # If imageb is constant then read imagea. If the constant + # is 1 do a vector move to imagec otherwise do a vector/scalar + # divide to imagec. + } else if (im_b == NULL) { + im[2] = im_a + while (ima_nlr (im, buf, v, 2) != EOF) { + if (b == 0.0) + call amovkr (divzero, Memr[buf[1]], len) + else if (b == 1.0) + call amovr (Memr[buf[2]], Memr[buf[1]], len) + else + call adivkr (Memr[buf[2]], b, Memr[buf[1]], len) + } + + # Read imagea and imageb and do the vector divide to imagec. + } else { + im[2] = im_a + im[3] = im_b + while (ima_nlr (im, buf, v, 3) != EOF) + call advzr (Memr[buf[2]], Memr[buf[3]], Memr[buf[1]], + len, ima_efncr) + } +end + + +# IMA_EFNC -- Error function for division by zero. + +real procedure ima_efncr (a) + +real a +real divzero +common /imadcomr/ divzero + +begin + return (divzero) +end + +procedure ima_divd (im_a, im_b, im_c, a, b, c) + +pointer im_a, im_b, im_c +double a, b, c + +int len +pointer im[3], buf[3] +long v[IM_MAXDIM, 3] + +int ima_nld() +double ima_efncd() +extern ima_efncd + +double divzero +common /imadcomd/ divzero + +begin + # Loop through all of the image lines. + divzero = c + im[1] = im_c + len = IM_LEN (im[1], 1) + call amovkl (long(1), v, 3 * IM_MAXDIM) + + # If imagea is constant then read imageb and do a vector + # reciprical to imagec. + if (im_a == NULL) { + im[2] = im_b + while (ima_nld (im, buf, v, 2) != EOF) + call arczd (a, Memd[buf[2]], Memd[buf[1]], len, + ima_efncd) + + # If imageb is constant then read imagea. If the constant + # is 1 do a vector move to imagec otherwise do a vector/scalar + # divide to imagec. + } else if (im_b == NULL) { + im[2] = im_a + while (ima_nld (im, buf, v, 2) != EOF) { + if (b == 0.0D0) + call amovkd (divzero, Memd[buf[1]], len) + else if (b == 1.0D0) + call amovd (Memd[buf[2]], Memd[buf[1]], len) + else + call adivkd (Memd[buf[2]], b, Memd[buf[1]], len) + } + + # Read imagea and imageb and do the vector divide to imagec. + } else { + im[2] = im_a + im[3] = im_b + while (ima_nld (im, buf, v, 3) != EOF) + call advzd (Memd[buf[2]], Memd[buf[3]], Memd[buf[1]], + len, ima_efncd) + } +end + + +# IMA_EFNC -- Error function for division by zero. + +double procedure ima_efncd (a) + +double a +double divzero +common /imadcomd/ divzero + +begin + return (divzero) +end + |