aboutsummaryrefslogtreecommitdiff
path: root/sys/mwcs/wfcsc.x
diff options
context:
space:
mode:
Diffstat (limited to 'sys/mwcs/wfcsc.x')
-rw-r--r--sys/mwcs/wfcsc.x624
1 files changed, 624 insertions, 0 deletions
diff --git a/sys/mwcs/wfcsc.x b/sys/mwcs/wfcsc.x
new file mode 100644
index 00000000..3dedc178
--- /dev/null
+++ b/sys/mwcs/wfcsc.x
@@ -0,0 +1,624 @@
+# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
+
+include <math.h>
+include "mwcs.h"
+
+.help WFCSC
+.nf -------------------------------------------------------------------------
+WFCSC -- WCS function driver for the COBE quadrilateratized cube projection.
+
+Driver routines:
+
+ FN_INIT wf_csc_init (fc, dir)
+ FN_DESTROY (none)
+ FN_FWD wf_csc_fwd (fc, v1, v2)
+ FN_INV wf_csc_inv (fc, v1, v2)
+
+.endhelp --------------------------------------------------------------------
+
+# Driver specific fields of function call (FC) descriptor.
+define FC_IRA Memi[$1+FCU] # RA axis (1 or 2)
+define FC_IDEC Memi[$1+FCU+1] # DEC axis (1 or 2)
+define FC_NATRA Memd[P2D($1+FCU+2)] # RA of native pole (rads)
+define FC_NATDEC Memd[P2D($1+FCU+4)] # DEC of native pole (rads)
+define FC_LONGP Memd[P2D($1+FCU+6)] # LONGPOLE (rads)
+define FC_COSDEC Memd[P2D($1+FCU+8)] # cosine (NATDEC)
+define FC_SINDEC Memd[P2D($1+FCU+10)] # sine (NATDEC)
+define FC_SPHTOL Memd[P2D($1+FCU+12)] # trig tolerance
+define FC_RODEG Memd[P2D($1+FCU+14)] # RO (degs)
+define FC_C1 Memd[P2D($1+FCU+16)] # RO * (PI / 4)
+define FC_C2 Memd[P2D($1+FCU+18)] # (4 / PI) * RO
+define FC_BADCVAL Memd[P2D($1+FCU+20)] # bad coordinate value
+define FC_W Memd[P2D($1+FCU+22)+($2)-1] # CRVAL axis (1 and 2)
+
+
+# WF_CSC_INIT -- Initialize the forward or inverse Cobe quadrilateralized
+# forward or inverse transform. Initialization for this transformation consists
+# of, determining which axis is RA / LON and which is DEC / LAT, reading in the
+# native longitude and latitude of the pole in celestial coordinates LONGPOLE
+# and LATPOLE from the attribute list, computing the celestial longitude and
+# colatitude of the native pole, Euler angles and various intermediary
+# functions of the reference point reading in the projection parameter RO from
+# the attribute list, and precomputing the various required intermediate
+# quantities. If LONGPOLE is undefined then a value of 180.0 degrees is assumed
+# if the celestial latitude is less than 0, otherwise 0 degrees is assumed.
+# If RO is undefined a value of 180.0 / PI is assumed. In order to determine
+# the axis order, the parameter "axtype={ra|dec} {xlon|ylat}" must have been
+# set in the attribute list for the function. The LONGPOLE, LATPOLE and RO
+# parameters may be set in either or both of the axes attribute lists, but the
+# value in the RA axis attribute list takes precedence.
+
+procedure wf_csc_init (fc, dir)
+
+pointer fc #I pointer to FC descriptor
+int dir #I direction of transform
+
+int i
+double dec, latpole, theta0, clat0, slat0, cphip, sphip, cthe0, sthe0, x, y, z
+double u, v, latp1, latp2, latp, maxlat, tol
+pointer sp, atvalue, ct, mw, wp, wv
+int ctod()
+data tol/1.0d-10/
+errchk wf_decaxis(), mw_gwattrs()
+
+begin
+ # Allocate space for the attribute string.
+ call smark (sp)
+ call salloc (atvalue, SZ_LINE, TY_CHAR)
+
+ # Get the required mwcs pointers.
+ ct = FC_CT(fc)
+ mw = CT_MW(ct)
+ wp = FC_WCS(fc)
+
+ # Determine which is the DEC axis, and hence the axis order.
+ call wf_decaxis (fc, FC_IRA(fc), FC_IDEC(fc))
+
+ # Get the value of W for each axis, i.e. the world coordinates at
+ # the reference point.
+
+ wv = MI_DBUF(mw) + WCS_W(wp) - 1
+ do i = 1, 2
+ FC_W(fc,i) = Memd[wv+CT_AXIS(ct,FC_AXIS(fc,i))-1]
+
+ # Determine the native longitude and latitude of the pole of the
+ # celestial coordinate system corresponding to the FITS keywords
+ # LONGPOLE and LATPOLE. LONGPOLE has no default but will be set
+ # to 180 or 0 depending on the value of the declination of the
+ # reference point. LATPOLE has no default but will be set depending
+ # on the values of LONGPOLE and the reference declination.
+
+ iferr {
+ call mw_gwattrs (mw, FC_IRA(fc), "longpole", Memc[atvalue], SZ_LINE)
+ } then {
+ iferr {
+ call mw_gwattrs (mw, FC_IDEC(fc), "longpole", Memc[atvalue],
+ SZ_LINE)
+ } then {
+ FC_LONGP(fc) = INDEFD
+ } else {
+ i = 1
+ if (ctod (Memc[atvalue], i, FC_LONGP(fc)) <= 0)
+ FC_LONGP(fc) = INDEFD
+ }
+ } else {
+ i = 1
+ if (ctod (Memc[atvalue], i, FC_LONGP(fc)) <= 0)
+ FC_LONGP(fc) = INDEFD
+ }
+ iferr {
+ call mw_gwattrs (mw, FC_IRA(fc), "latpole", Memc[atvalue], SZ_LINE)
+ } then {
+ iferr {
+ call mw_gwattrs (mw, FC_IDEC(fc), "latpole", Memc[atvalue],
+ SZ_LINE)
+ } then {
+ latpole = INDEFD
+ } else {
+ i = 1
+ if (ctod (Memc[atvalue], i, latpole) <= 0)
+ latpole = INDEFD
+ }
+ } else {
+ i = 1
+ if (ctod (Memc[atvalue], i, latpole) <= 0)
+ latpole = INDEFD
+ }
+
+
+
+ # Fetch the RO projection parameter which is the radius of the
+ # generating sphere for the projection. If RO is absent which
+ # is the usual case set it to 180 / PI. Search both axes for
+ # this quantity.
+
+ iferr {
+ call mw_gwattrs (mw, FC_IRA(fc), "ro", Memc[atvalue], SZ_LINE)
+ } then {
+ iferr {
+ call mw_gwattrs (mw, FC_IDEC(fc), "ro", Memc[atvalue],
+ SZ_LINE)
+ } then {
+ FC_RODEG(fc) = 180.0d0 / DPI
+ } else {
+ i = 1
+ if (ctod (Memc[atvalue], i, FC_RODEG(fc)) <= 0)
+ FC_RODEG(fc) = 180.0d0 / DPI
+ }
+ } else {
+ i = 1
+ if (ctod (Memc[atvalue], i, FC_RODEG(fc)) <= 0)
+ FC_RODEG(fc) = 180.0d0 / DPI
+ }
+
+ # Compute the native longitude of the celestial pole.
+ dec = DDEGTORAD(FC_W(fc,FC_IDEC(fc)))
+ theta0 = 0.0d0
+ if (IS_INDEFD(FC_LONGP(fc))) {
+ if (dec < theta0)
+ FC_LONGP(fc) = DPI
+ else
+ FC_LONGP(fc) = 0.0d0
+ } else
+ FC_LONGP(fc) = DDEGTORAD(FC_LONGP(fc))
+
+ # Compute the celestial longitude and latitude of the native pole.
+ clat0 = cos (dec)
+ slat0 = sin (dec)
+ cphip = cos (FC_LONGP(fc))
+ sphip = sin (FC_LONGP(fc))
+ cthe0 = cos (theta0)
+ sthe0 = sin (theta0)
+
+ x = cthe0 * cphip
+ y = sthe0
+ z = sqrt (x * x + y * y)
+
+ # The latitude of the native pole is determined by LATPOLE in this
+ # case.
+ if (z == 0.0d0) {
+
+ if (slat0 != 0.0d0)
+ call error (0, "WF_CSC_INIT: Invalid projection parameters")
+ if (IS_INDEFD(latpole))
+ latp = 999.0d0
+ else
+ latp = DDEGTORAD(latpole)
+
+ } else {
+ if (abs (slat0 / z) > 1.0d0)
+ call error (0, "WF_CSC_INIT: Invalid projection parameters")
+
+ u = atan2 (y, x)
+ v = acos (slat0 / z)
+ latp1 = u + v
+ if (latp1 > DPI)
+ latp1 = latp1 - DTWOPI
+ else if (latp1 < -DPI)
+ latp1 = latp1 + DTWOPI
+
+ latp2 = u - v
+ if (latp2 > DPI)
+ latp2 = latp2 - DTWOPI
+ else if (latp2 < -DPI)
+ latp2 = latp2 + DTWOPI
+
+
+ if (IS_INDEFD(latpole))
+ maxlat = 999.0d0
+ else
+ maxlat = DDEGTORAD(latpole)
+ if (abs (maxlat - latp1) < abs (maxlat - latp2)) {
+ if (abs (latp1) < (DHALFPI + tol))
+ latp = latp1
+ else
+ latp = latp2
+ } else {
+ if (abs (latp2) < (DHALFPI + tol))
+ latp = latp2
+ else
+ latp = latp1
+ }
+ }
+ FC_NATDEC(fc) = DHALFPI - latp
+
+ z = cos (latp) * clat0
+ if (abs(z) < tol) {
+
+ # Celestial pole at the reference point.
+ if (abs(clat0) < tol) {
+ FC_NATRA(fc) = DDEGTORAD(FC_W(fc,FC_IRA(fc)))
+ FC_NATDEC(fc) = DHALFPI - theta0
+ # Celestial pole at the native north pole.
+ } else if (latp > 0.0d0) {
+ FC_NATRA(fc) = DDEGTORAD(FC_W(fc,FC_IRA(fc))) + FC_LONGP(fc) -
+ DPI
+ FC_NATDEC(fc) = 0.0d0
+ # Celestial pole at the native south pole.
+ } else if (latp < 0.0d0) {
+ FC_NATRA(fc) = DDEGTORAD(FC_W(fc,FC_IRA(fc))) - FC_LONGP(fc)
+ FC_NATDEC(fc) = DPI
+ }
+
+ } else {
+ x = (sthe0 - sin (latp) * slat0) / z
+ y = sphip * cthe0 / clat0
+ if (x == 0.0d0 && y == 0.0d0)
+ call error (0, "WF_CSC_INIT: Invalid projection parameters")
+ FC_NATRA(fc) = DDEGTORAD(FC_W(fc,FC_IRA(fc))) - atan2 (y,x)
+ }
+
+ if (FC_W(fc,FC_IRA(fc)) >= 0.0d0) {
+ if (FC_NATRA(fc) < 0.0d0)
+ FC_NATRA(fc) = FC_NATRA(fc) + DTWOPI
+ } else {
+ if (FC_NATRA(fc) > 0.0d0)
+ FC_NATRA(fc) = FC_NATRA(fc) - DTWOPI
+ }
+ FC_COSDEC(fc) = cos (FC_NATDEC(fc))
+ FC_SINDEC(fc) = sin (FC_NATDEC(fc))
+
+ # Check for ill-conditioned parameters.
+ if (abs(latp) > (DHALFPI+tol))
+ call error (0, "WF_CSC_INIT: Invalid projection parameters")
+
+ # Compute the required intermediate quantities.
+ FC_C1(fc) = FC_RODEG(fc) * (DPI / 4.0d0)
+ FC_C2(fc) = 1.0d0 / FC_C1(fc)
+
+ # Set the bad coordinate value.
+ FC_SPHTOL(fc) = 1.0d-5
+
+ # Set the bad coordinate value.
+ FC_BADCVAL(fc) = INDEFD
+
+ # Free working space.
+ call sfree (sp)
+end
+
+
+# WF_CSC_FWD -- Forward transform (physical to world) for the COBE
+# quarilateralized spherical projection.
+
+procedure wf_csc_fwd (fc, p, w)
+
+pointer fc #I pointer to FC descriptor
+double p[2] #I physical coordinates (x, y)
+double w[2] #O world coordinates (ra, dec)
+
+int ira, idec, face
+double l, m, n, phi, theta, costhe, sinthe, dphi, cosphi, sinphi, x, y, z
+double ra, dec, dlng
+real a, b, xf, xx, yf, yy
+real p00, p01, p02, p03, p04, p05, p06, p10, p11, p12, p13, p14, p15, p20
+real p21, p22, p23, p24, p30, p31, p32, p33, p40, p41, p42, p50, p51, p60
+data p00/-.27292696/, p10/-.07629969/, p20/-.22797056/, p30/.54852384/
+data p40/-.62930065/, p50/.25795794/, p60/.02584375/, p01/-.02819452/
+data p11/-.01471565/, p21/.48051509/, p31/-1.74114454/, p41/1.71547508/
+data p51/-.53022337/, p02/.27058160/, p12/-.56800938/, p22/.30803317/
+data p32/.98938102/, p42/-.83180469/, p03/-.60441560/, p13/1.50880086/
+data p23/-.93678576/, p33/.08693841/, p04/.93412077/, p14/-1.41601920/
+data p24/.33887446/, p05/-.63915306/, p15/.52032238/, p06/.14381585/
+
+
+begin
+ # Get the axis numbers.
+ ira = FC_IRA(fc)
+ idec = FC_IDEC(fc)
+
+ # Compute native spherical coordinates PHI and THETA in degrees from
+ # the projected coordinates. This is the projection part of the
+ # computation.
+
+ xf = p[ira] * FC_C2(fc)
+ yf = p[idec] * FC_C2(fc)
+ if (xf > 5.0) {
+ face = 4
+ xf = xf - 6.0
+ } else if (xf > 3.0) {
+ face = 3
+ xf = xf - 4.0
+ } else if (xf > 1.0) {
+ face = 2
+ xf = xf - 2.0
+ } else if (yf > 1.0) {
+ face = 0
+ yf = yf - 2.0
+ } else if (yf < -1.0) {
+ face = 5
+ yf = yf + 2.0
+ } else {
+ face = 1
+ }
+
+ xx = xf * xf
+ yy = yf * yf
+ a = (p00+xx*(p10+xx*(p20+xx*(p30+xx*(p40+xx*(p50+xx*(p60)))))) +
+ yy*(p01+xx*(p11+xx*(p21+xx*(p31+xx*(p41+xx*(p51))))) +
+ yy*(p02+xx*(p12+xx*(p22+xx*(p32+xx*(p42)))) +
+ yy*(p03+xx*(p13+xx*(p23+xx*(p33))) +
+ yy*(p04+xx*(p14+xx*(p24)) +
+ yy*(p05+xx*(p15) +
+ yy*(p06)))))))
+ a = xf + xf * (1.0 - xx) * a
+ b = (p00+yy*(p10+yy*(p20+yy*(p30+yy*(p40+yy*(p50+yy*(p60)))))) +
+ xx*(p01+yy*(p11+yy*(p21+yy*(p31+yy*(p41+yy*(p51))))) +
+ xx*(p02+yy*(p12+yy*(p22+yy*(p32+yy*(p42)))) +
+ xx*(p03+yy*(p13+yy*(p23+yy*(p33))) +
+ xx*(p04+yy*(p14+yy*(p24)) +
+ xx*(p05+yy*(p15) +
+ xx*(p06)))))))
+ b = yf + yf * (1.0 - yy) * b
+
+ switch (face) {
+ case 0:
+ n = 1.0d0 / sqrt (a * a + b * b + 1.0d0)
+ l = a * n
+ m = -b * n
+ case 1:
+ m = 1.0d0 / sqrt (a * a + b * b + 1.0d0)
+ l = a * m
+ n = b * m
+ case 2:
+ l = 1.0d0 / sqrt (a * a + b * b + 1.0d0)
+ m = -a * l
+ n = b * l
+ case 3:
+ m = -1.0d0 / sqrt (a * a + b * b + 1.0d0)
+ l = a * m
+ n = -b * m
+ case 4:
+ l = -1.0d0 / sqrt (a * a + b * b + 1.0d0)
+ m = -a * l
+ n = -b * l
+ case 5:
+ n = -1.0d0 / sqrt (a * a + b * b + 1.0d0)
+ l = -a * n
+ m = -b * n
+ }
+
+ # Compute PHI.
+ if (l == 0.0d0 && m == 0.0d0)
+ phi = 0.0d0
+ else
+ phi = atan2 (l, m)
+
+ # Compute THETA.
+ theta = asin(n)
+
+ # Compute the celestial coordinates RA and DEC from the native
+ # coordinates PHI and THETA. This is the spherical geometry part
+ # of the computation.
+
+ costhe = cos (theta)
+ sinthe = sin (theta)
+ dphi = phi - FC_LONGP(fc)
+ cosphi = cos (dphi)
+ sinphi = sin (dphi)
+
+ # Compute the RA.
+ x = sinthe * FC_SINDEC(fc) - costhe * FC_COSDEC(fc) * cosphi
+ if (abs (x) < FC_SPHTOL(fc))
+ x = -cos (theta + FC_NATDEC(fc)) + costhe * FC_COSDEC(fc) *
+ (1.0d0 - cosphi)
+ y = -costhe * sinphi
+ if (x != 0.0d0 || y != 0.0d0) {
+ dlng = atan2 (y, x)
+ } else {
+ dlng = dphi + DPI
+ }
+ ra = DRADTODEG(FC_NATRA(fc) + dlng)
+
+ # Normalize the RA.
+ if (FC_NATRA(fc) >= 0.0d0) {
+ if (ra < 0.0d0)
+ ra = ra + 360.0d0
+ } else {
+ if (ra > 0.0d0)
+ ra = ra - 360.0d0
+ }
+ if (ra > 360.0d0)
+ ra = ra - 360.0d0
+ else if (ra < -360.0d0)
+ ra = ra + 360.0d0
+
+ # Compute the DEC.
+ if (mod (dphi, DPI) == 0.0d0) {
+ dec = DRADTODEG(theta + cosphi * FC_NATDEC(fc))
+ if (dec > 90.0d0)
+ dec = 180.0d0 - dec
+ if (dec < -90.0d0)
+ dec = -180.0d0 - dec
+ } else {
+ z = sinthe * FC_COSDEC(fc) + costhe * FC_SINDEC(fc) * cosphi
+ if (abs(z) > 0.99d0) {
+ if (z >= 0.0d0)
+ dec = DRADTODEG(acos (sqrt(x * x + y * y)))
+ else
+ dec = DRADTODEG(-acos (sqrt(x * x + y * y)))
+ } else
+ dec = DRADTODEG(asin (z))
+ }
+
+ # Store the results.
+ w[ira] = ra
+ w[idec] = dec
+end
+
+
+# WF_CSC_INV -- Inverse transform (world to physical) for the COBE
+# quadilateralized spherical projection.
+
+procedure wf_csc_inv (fc, w, p)
+
+pointer fc #I pointer to FC descriptor
+double w[2] #I input world (RA, DEC) coordinates
+double p[2] #I output physical coordinates
+
+int ira, idec, face
+double ra, dec, cosdec, sindec, cosra, sinra, x, y, z, phi, theta, dphi
+double costhe, eta, l, m, n, rho, xi
+real tol, a, a2, a2b2, a4, b, b2, b4, ca2, cb2, x0, xf, y0, yf
+real c00, c10, c01, c11, c20, c02, d0, d1, mm, gamma, gstar, omega1
+data gstar/1.37484847732/, mm/.004869491981/, gamma/-.13161671474/
+data omega1/-.159596235474/, d0/.0759196200467/, d1/-.0217762490699/
+data c00/.141189631152/, c10/.0809701286525/, c01/-.281528535557/
+data c11/.15384112876/, c20/-.178251207466/, c02/.106959469314/
+data tol /1.0e-7/
+
+begin
+ # Get the axes numbers.
+ ira = FC_IRA(fc)
+ idec = FC_IDEC(fc)
+
+ # Compute the transformation from celestial coordinates RA and
+ # DEC to native coordinates PHI and THETA. This is the spherical
+ # geometry part of the transformation.
+
+ ra = DDEGTORAD (w[ira]) - FC_NATRA(fc)
+ dec = DDEGTORAD (w[idec])
+ cosra = cos (ra)
+ sinra = sin (ra)
+ cosdec = cos (dec)
+ sindec = sin (dec)
+
+ # Compute PHI.
+ x = sindec * FC_SINDEC(fc) - cosdec * FC_COSDEC(fc) * cosra
+ if (abs(x) < FC_SPHTOL(fc))
+ x = -cos (dec + FC_NATDEC(fc)) + cosdec * FC_COSDEC(fc) *
+ (1.0d0 - cosra)
+ y = -cosdec * sinra
+ if (x != 0.0d0 || y != 0.0d0)
+ dphi = atan2 (y, x)
+ else
+ dphi = ra - DPI
+ phi = FC_LONGP(fc) + dphi
+ if (phi > DPI)
+ phi = phi - DTWOPI
+ else if (phi < -DPI)
+ phi = phi + DTWOPI
+
+ # Compute THETA.
+ if (mod (ra, DPI) == 0.0) {
+ theta = dec + cosra * FC_NATDEC(fc)
+ if (theta > DHALFPI)
+ theta = DPI - theta
+ if (theta < -DHALFPI)
+ theta = -DPI - theta
+ } else {
+ z = sindec * FC_COSDEC(fc) + cosdec * FC_SINDEC(fc) * cosra
+ if (abs (z) > 0.99d0) {
+ if (z >= 0.0)
+ theta = acos (sqrt(x * x + y * y))
+ else
+ theta = -acos (sqrt(x * x + y * y))
+ } else
+ theta = asin (z)
+ }
+
+ # Compute the transformation from native coordinates PHI and THETA
+ # to projected coordinates X and Y.
+ costhe = cos (theta)
+ l = costhe * sin (phi)
+ m = costhe * cos (phi)
+ n = sin (theta)
+
+ face = 0
+ rho = n
+ if (m > rho) {
+ face = 1
+ rho = m
+ }
+ if (l > rho) {
+ face = 2
+ rho = l
+ }
+ if (-m > rho) {
+ face = 3
+ rho = -m
+ }
+ if (-l > rho) {
+ face = 4
+ rho = -l
+ }
+ if (-n > rho) {
+ face = 5
+ rho = -n
+ }
+
+ switch (face) {
+ case 0:
+ xi = l
+ eta = -m
+ x0 = 0.0
+ y0 = 2.0
+ case 1:
+ xi = l
+ eta = n
+ x0 = 0.0
+ y0 = 0.0
+ case 2:
+ xi = -m
+ eta = n
+ x0 = 2.0
+ y0 = 0.0
+ case 3:
+ xi = -l
+ eta = n
+ x0 = 4.0
+ y0 = 0.0
+ case 4:
+ xi = m
+ eta = n
+ x0 = 6.0
+ y0 = 0.0
+ case 5:
+ xi = l
+ eta = m
+ x0 = 0.0
+ y0 = -2.0
+ }
+
+ a = xi / rho
+ b = eta / rho
+ a2 = a * a
+ b2 = b * b
+ a4 = a2 * a2
+ b4 = b2 * b2
+ a2b2 = a2 * b2
+ ca2 = 1.0 - a2
+ cb2 = 1.0 - b2
+
+ xf = a*(a2+ca2*(gstar+b2*(gamma*ca2+mm*a2 +
+ cb2*(c00+c10*a2+c01*b2+c11*a2b2+c20*a4+c02*b4)) +
+ a2*(omega1-ca2*(d0+d1*a2))))
+ yf = b*(b2+cb2*(gstar+a2*(gamma*cb2+mm*b2 +
+ ca2*(c00+c10*b2+c01*a2+c11*a2b2+c20*b4+c02*a4)) +
+ b2*(omega1-cb2*(d0+d1*b2))))
+
+ if (abs(xf) > 1.0) {
+ if (abs(xf) > (1.0 + tol)) {
+ p[ira] = FC_BADCVAL(fc)
+ p[idec] = FC_BADCVAL(fc)
+ return
+ }
+ if (xf >= 0.0)
+ xf = 1.0
+ else
+ xf = -1.0
+ }
+ if (abs(yf) > 1.0) {
+ if (abs(yf) > (1.0 + tol)) {
+ p[ira] = FC_BADCVAL(fc)
+ p[idec] = FC_BADCVAL(fc)
+ return
+ }
+ if (yf >= 0.0)
+ yf = 1.0
+ else
+ yf = -1.0
+ }
+
+ p[ira] = FC_C1(fc) * (x0 + xf)
+ p[idec] = FC_C1(fc) * (y0 + yf)
+end