aboutsummaryrefslogtreecommitdiff
path: root/math/bevington/regres.f
blob: ef23a574899674128c1ef0355880c7452b1610fb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
c subroutine regres.f
c
c source
c   Bevington, pages 172-175.
c
c purpose
c   make a mulitple linear regression fit to data with a specified
c      function which is linear in coefficients
c
c usage
c   call regres (x, y, sigmay, npts, nterms, m, mode, yfit,
c      a0, a, sigma0, sigmaa, r, rmul, chisqr, ftest)
c
c description of parameters
c   x	   - array of points for independent variable
c   y	   - array of points for dependent variable
c   sigmay - array of standard deviations for y data points
c   npts   - number of pairs of data points
c   nterms - number of coefficients
c   m	   - array of inclusion/rejection criteria for fctn
c   mode   - determines method of weighting least-squares fit
c	     +1 (instrumental) weight(i) = 1./sigmay(i)**2
c	      0 (no weighting) weight(i) = 1.
c	     -1 (statistical)  weight(i) = 1./y(i)
c   yfit   - array of calculated values of y
c   a0	   - constant term
c   a	   - array of coefficients
c   sigma0 - standard deviation of a0
c   sigmaa - array of standard deviations for coefficients
c   r	   - array of linear correlation coefficients
c   rmul   - multiple linear correlation coefficient
c   chisqr - reduced chi square for fit
c   ftest  - value of f for test of fit
c
c subroutines and function subprograms required
c   fctn (x, i, j, m)
c      evaluates the function for the jth term and the ith data point
c      using the array m to specify terms in the function
c   matinv (array, nterms, det)
c      inverts a symmetric two-dimensional matrix of degree nterms
c      and calculates its determinant
c
c comments
c (dim npts changed 100->1000 21-may-84 dct)
c   dimension statement valid for npts up to 100 and nterms up to 10
c   sigmaag changed to sigmaa in statement following statement 132
c
      subroutine regres (x,y,sigmay,npts,nterms,m,mode,yfit,
     *a0,a,sigma0,sigmaa,r,rmul,chisqr,ftest)
      double precision array,sum,ymean,sigma,chisq,xmean,sigmax
      dimension x(1),y(1),sigmay(1),m(1),yfit(1),a(1),sigmaa(1),
     *r(1)
      dimension weight(1000),xmean(10),sigmax(10),array(10,10)
      REAL FCTN
      EXTERNAL FCTN

c
c initialize sums and arrays
c
11    sum=0.
      ymean=0.
      sigma=0.
      chisq=0.
      rmul=0.
      do 17 i=1,npts
17    yfit(i)=0.
21    do 28 j=1,nterms
      xmean(j)=0.
      sigmax(j)=0.
      r(j)=0.
      a(j)=0.
      sigmaa(j)=0.
      do 28 k=1,nterms
28    array(j,k)=0.
c
c accumulate weighted sums
c
30    do 50 i=1,npts
31    if (mode) 32,37,39
32    if (y(i)) 35,37,33
33    weight(i)=1./y(i)
      goto 41
35    weight(i)=1./(-y(i))
      goto 41
37    weight(i)=1.
      goto 41
39    weight(i)=1./sigmay(i)**2
41    sum=sum+weight(i)
      ymean=ymean+weight(i)*y(i)
      do 44 j=1,nterms
44    xmean(j)=xmean(j)+weight(i)*fctn(x,i,j,m)
50    continue
51    ymean=ymean/sum
      do 53 j=1,nterms
53    xmean(j)=xmean(j)/sum
      fnpts=npts
      wmean=sum/fnpts
      do 57 i=1,npts
57    weight(i)=weight(i)/wmean
c
c accumulate matrices r and array
c
61    do 67 i=1,npts
      sigma=sigma+weight(i)*(y(i)-ymean)**2
      do 67 j=1,nterms
      sigmax(j)=sigmax(j)+weight(i)*(fctn(x,i,j,m)-xmean(j))**2
      r(j)=r(j)+weight(i)*(fctn(x,i,j,m)-xmean(j))*(y(i)-ymean)
      do 67 k=1,j
67    array(j,k)=array(j,k)+weight(i)*(fctn(x,i,j,m)-xmean(j))*
     *(fctn(x,i,k,m)-xmean(k))
71    free1=npts-1
72    sigma=dsqrt(sigma/free1)
      do 78 j=1,nterms
74    sigmax(j)=dsqrt(sigmax(j)/free1)
      r(j)=r(j)/(free1*sigmax(j)*sigma)
      do 78 k=1,j
      array(j,k)=array(j,k)/(free1*sigmax(j)*sigmax(k))
78    array(k,j)=array(j,k)
c
c invert symmetric matrix
c
81    call matinv (array,nterms,det)
      if (det) 101,91,101
91    a0=0.
      sigma0=0.
      rmul=0.
      chisqr=0.
      ftest=0.
      goto 150
c
c calculate coefficients, fit, and chi square
c
101   a0=ymean
102   do 108 j=1,nterms
      do 104 k=1,nterms
104   a(j)=a(j)+r(k)*array(j,k)
105   a(j)=a(j)*sigma/sigmax(j)
106   a0=a0-a(j)*xmean(j)
107   do 108 i=1,npts
108   yfit(i)=yfit(i)+a(j)*fctn(x,i,j,m)
111   do 113 i=1,npts
      yfit(i)=yfit(i)+a0
113   chisq=chisq+weight(i)*(y(i)-yfit(i))**2
      freen=npts-nterms-1
115   chisqr=chisq*wmean/freen
c
c calculate uncertainties
c
121   if (mode) 122,124,122
122   varnce=1./wmean
      goto 131
124   varnce=chisqr
131   do 133 j=1,nterms
132   sigmaa(j)=array(j,j)*varnce/(free1*sigmax(j)**2)
      sigmaa(j)=sqrt(sigmaa(j))
133   rmul=rmul+a(j)*r(j)*sigmax(j)/sigma
      freej=nterms
c +noao: When rmul = 1, the following division (stmt 135) would blow up.
c        It has been changed so ftest is set to -99999. in this case.
      if (1. - rmul) 135, 935, 135
135   ftest=(rmul/freej)/((1.-rmul)/freen)
      goto 136
935   ftest = -99999.
c -noao
136   rmul=sqrt(rmul)
141   sigma0=varnce/fnpts
      do 145 j=1,nterms
      do 145 k=1,nterms
145   sigma0=sigma0+varnce*xmean(j)*xmean(k)*array(j,k)/
     *(free1*sigmax(j)*sigmax(k))
146   sigma0=sqrt(sigma0)
150   return
      end