aboutsummaryrefslogtreecommitdiff
path: root/math/curfit/curfit.sem
blob: 28058626e4a0ca513259aa4e901e4813829b8f6d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
# Semi-code for curfit.h

# define the permitted types of curves

define	CHEBYSHEV	1
define	LEGENDRE	2
define	L2SPLINE4	3

# define the weighting flags

define	NORMAL		1	# user enters weights
define	UNIFORM		2	# equal weights, weight 1.0
define	SPACING		3	# weigth proportional to spacing of data points

define	SPLINE_ORDER	4

# set up the curve fitting structure

define	LEN_CVSTRUCT

struct curfit {

define	CV_TYPE		Memi[]		# Type of curve to be fitted
define	CV_ORDER	Memi[]		# Order of the fit
define	CV_NPIECES	Memi[]		# Number of polynomial pieces, spline
define	CV_NCOEFF	Memi[]		# Number of coefficients
define	CV_XMAX		Memr[]		# Maximum x value
define	CV_XMIN		Memr[]		# Minimum x value
define	CV_RANGE	Memr[]		# Xmax minus xmin
define	CV_MAXMIN	Memr[]		# Xmax plus xmin
define	CV_SPACING	Memr[]		# Knot spacing for splines
define	CV_YNORM	Memr[]		# Norm of the Y vector
define	CV_NPTS		Memi[]		# Number of data points

define	CV_MATRIX	Memi[]		# Pointer to original matrix
define	CV_CHOFAC	Memi[]		# Pointer to Cholesky factorization
define	CV_BASIS	Memi[]		# Pointer to basis functions
define	CV_VECTOR	Memi[]		# Pointer to  vector
define	CV_COEFF	Memi[]		# Pointer to coefficient vector
define	CV_LEFT		Memi[]		#

}

# matrix and vector element definitions

define	MATRIX		Memr[$1+($2-1)*NCOEFF(cv)]	# Matrix element
define	CHOFAC		Memr[$1+($2-1)*NCOEFF(cv)]	# Triangular matrix
define	VECTOR		Memr[$1+$2]			# Right side
define	COEFF		Memr[$1+$2]			# Coefficient vector
define	LEFT		Memi[$1+$2]

# matrix and vector definitions

define	MAT		Memr[$1]
define	CHO		Memr[$1]
define	VECT		Memr[$1]
define	COF		Memr[$1]

# semi-code for the initialization procedure

include "curfit.h"

# CVINIT --  Procedure to set up the curve  descriptor.

procedure cvinit (cv, curve_type, order, xmin, xmax)

pointer	cv		# pointer to curve descriptor structure
int	curve_type	# type of curve to be fitted
int	order		# order of curve to be fitted, or in the case of the
			# spline the number of polynomial pieces to be fit
real	xmin		# minimum value of x
real	xmax		# maximum value of x

begin
	# allocate space for the curve descriptor
	call smark (sp)
	call salloc (cv, LEN_CVSTRUCT, TY_STRUCT)

	if (order < 1)
	    call error (0, "CVINIT: Illegal order.")

	if (xmax <= xmin)
	    call error (0, "CVINIT: xmax <= xmin.")

	switch (curve_type) {
	case CHEBYSHEV, LEGENDRE:
	    CV_ORDER(cv) = order
	    CV_NCOEFF(CV) = order
	    CV_RANGE(cv) = xmax - xmin
	    CV_MAXMIN(cv) = xmax + xmin
	case L2SPLINE4:
	    CV_ORDER(cv) = SPLINE_ORDER
	    CV_NCOEFF(cv) = order + SPLINE_ORDER - 1
	    CV_NPIECES(cv) = order
	    CV_SPACING(cv) = (xmax - xmin) / order
	default:
	    call error (0, "CVINIT: Unknown curve type.")
	}

	CV_TYPE(cv) = curve_type
	CV_XMIN(cv) = xmin
	CV_XMAX(cv) = xmax

	# allocate space for the matrix and vectors
	call calloc (CV_MATRIX(cv), CV_ORDER(cv)*CV_NCOEFF(cv), TY_REAL)
	call calloc (CV_CHOFAC(cv), CV_ORDER(cv)*CV_NCOEFF(cv), TY_REAL)
	call calloc (CV_VECTOR(cv), CV_NCOEFF(cv), TY_REAL)
	call calloc (CV_COEFF(cv), CV_NCOEFF(cv), TY_REAL)

	# initialize pointer to basis functions to null
	CV_BASIS(cv) = NULL

	CV_NPTS(cv) = 0
	CV_YNORM(cv) = 0.
end

# semi-code for cvaccum

include "curfit.h"

# CVACCUM -- Procedure to add a single point to the data set.

procedure cvaccum (cv, x, y, w, wtflag)

pointer	cv		# curve descriptor
real	x		# x value
real	y		# y value
real	w		# weight of the data point
int	wtflag		# type of weighting desired

begin
	# calculate the weights
	switch (wtflag) {
	case UNIFORM:
	    w = 1.0
	case NORMAL, SPACING: 		# problem spacing
	default:
	    w = 1.0
	}

	# caculate all non-zero basis functions for a given data point
	switch (CV_TYPE(cv)) {
	case CHEBYSHEV:
	    left = 1
	    call chebyshev (cv, x, basis)
	case LEGENDRE:
	    left = 1
	    call legendre (cv, x, basis)
	case L2SPLINE4:
	    call l2spline4 (cv, x, left, basis)
	}

	# accumulate into the matrix
	leftm1 = left - 1
	vptr = CV_VECTOR(cv) - 1
	do i = 1, CV_ORDER(cv) {
	    bw = basis[i] * w
	    jj = leftm1 + i
	    mptr = CV_MATRIX(cv) + jj - 1
	    VECTOR(vptr, jj) = VECTOR(vptr, jj) + bw * y
	    ii = 1
	    do j = i, CV_ORDER(cv) {
		MATRIX(mptr, ii) = MATRIX(mptr, ii) + basis[j] * bw
		ii = ii + 1
	    }
	}

	CV_NPTS(cv) = CV_NPTS(cv) + 1
	CV_YNORM(cv) = CV_YNORM(cv) + w * y * y
end

# semi-code for cvreject

include "curfit.h"

# CVREJECT -- Procedure to subtract a single datapoint from the data set
# to be fitted.

procedure cvreject (cv, x, y, w)

pointer	cv		# curve fitting image descriptor
real	x		# x value
real	y		# y value
real	w		# weight of the data point

begin
	# caculate all type non-zero basis functions for a given data point
	switch (CV_TYPE(cv)) {
	case CHEBYSHEV:
	    left = 1
	    call chebyshev (cv, x, basis)
	case LEGENDRE:
	    left = 1
	    call legendre (cv, x, basis)
	case L2SPLINE4:
	    call l2spline4 (cv, x, left, basis)
	}

	# subtract the data point from the matrix
	leftm1 = left - 1
	vptr = CV_VECTOR(cv) - 1
	do i = 1, CV_ORDER(cv) {
	    bw = basis[i] * w
	    jj = leftm1 + i
	    mptr = CV_MATRIX(cv) + jj - 1
	    VECTOR(vptr, jj) = VECTOR(vptr, jj) - bw * y
	    ii = 1
	    do j = i, CV_ORDER(cv) {
		MATRIX(mptr, ii) = MATRIX(mptr, ii) - basis[j] * bw
		ii = ii + 1
	    }
	}

	CV_NPTS(cv) = CV_NPTS(cv) - 1
	CV_NORM(cv) = CV_NORM(cv) - w * y * y
end

# semi-code for cvsolve

include "curfit.h"

# CVSOLVE -- Procedure to  solve a matrix equation of the form Ax = B.
# The Cholesky factorization of matrix A is calculated in the first
# step, followed by forward and back substitution to solve for the vector
# x.

procedure cvsolve (cv, ier)

pointer	cv 		# pointer to the image descriptor structure
int	ier		# ier = 0, everything OK
			# ier = 1, matrix is singular

begin
	# solve matrix by adapting Deboor's bchfac.f and bchslv.f routines
	# so that the original matrix and vector are not destroyed

	call chofac (MAT(CV_MATRIX(cv)), CV_ORDER(cv), CV_NCOEFF(cv),
		     CHO(CV_CHOFAC(cv)), ier)
	call choslv (CHO(CV_CHOFAC(cv)), CV_ORDER(cv), CV_NCOEFF(cv),
		     VECT(CV_VECTOR(cv)), COF(CV_COEFF(cv)))
end

# semi-code for cvfit

include "curfit.h"

# CVFIT -- Procedure to fit a curve to an array of data points x and y with
# weights w.

procedure cvfit (x, y, w, npts, wtflag, ier)

real	x[npts]		# array of abcissa
real	y[npts]		# array of ordinates
real	w[npts]		# array of weights
int	wtflag		# type of weighting
int	ier

begin
	# calculate weights
	switch (wtflag) {
	case UNIFORM:
	    call amovkr (1., w, npts)
	case SPACING:
	    w[1] = x[2] - x[1]			# check for npts > 1
	    do i = 2, npts - 1
		w[i] = x[i+1] - x[i-1]
	    w[npts] = x[npts] - x[npts-1]
	case NORMAL:
	default:
	    call amovkr (1., w, npts)
	}

	# accumulate data points
	do i = 1, npts {

	    CV_NPTS(cv) = CV_NPTS(cv) + 1

	    # calculate the norm of the Y vector
	    CV_YNORM(cv) = CV_YNORM(cv) + w[i] * y[i] * y[i]

	    # calculate non zero basis functions
	    switch (CV_TYPE(cv)) {
	    case CHEBYSHEV:
		left = 1
		call chebyshev (cv, x, basis)
	    case LEGENDRE:
		left = 1
		call legendre (cv, x, basis)
	    case L2SPLINE4:
		call l2spline4 (cv, x, left, basis)
	    }

	    # accumulate the matrix
	    leftm1 = left - 1
	    vptr = CV_VECTOR(cv) - 1
	    do i = 1, CV_ORDER(cv) {
	        bw = basis[i] * w
	        jj = leftm1 + i
		mptr = CV_MATRIX(cv) + jj - 1
	        VECTOR(vptr, jj) = VECTOR(vptr, jj) + bw * y
	        ii = 1
	        do j = i, CV_ORDER(cv) {
		    MATRIX(mptr, ii) = MATRIX(mptr, ii) + basis[j] * bw
		    ii = ii + 1
	        }
	    }
	}

	# solve the matrix
	ier = 0
	call chofac (MAT(CV_MATRIX(cv)), CV_ORDER(cv), CV_NCOEFF(cv),
		     CHO(CV_CHOFAC(cv)), ier)
	call choslv (CHO(CV_CHOFAC(cv)), CV_ORDER(cv), CV_NCOEFF(cv),
		     VECT(CV_VECTOR(cv)), COF(CV_COEFF(cv)))
end

# semi-code for cvrefit

include "curfit.com"

# CV_REFIT -- Procedure to refit the data assuming that the x and w values do
# not change.

procedure cvrefit (cv, x, y, w, ier)

pointer	cv
real	x[ARB]
real	y[ARB]
real	w[ARB]
int	ier

begin
	# if first call to refit then calculate and store the basis
	# functions

	vcptr = CV_VECTOR(cv) - 1
	do i = 1, NCOEFF(cv)
	    VECTOR(vcptr+i) = 0.

	CV_YNORM(cv) = 0.
	lptr = CV_LEFT(cv) - 1
	bcptr = CV_BASIS(cv) - CV_NPTS(cv)

	if (CV_BASIS(cv) == NULL) {

	    call calloc (CV_BASIS(cv), CV_NPTS(cv)*CV_ORDER(cv), TY_REAL)
	    call calloc (CV_LEFT(cv), CV_NPTS(cv), TY_INT)

	    do l = 1, CV_NPTS(cv) {
		bptr = bcptr + l * CV_NPTS(cv)
		switch (CV_TYPE(cv)) {
		case LEGENDRE:
		    LEFT(lptr+l) = 1
		    call legendre (cv, x, BASIS(bptr))
		case CHEBYSHEV:
		    LEFT(lptr+l) = 1
		    call chebyshev (cv, x, BASIS(bptr))
		case L2SPLINE4:
		    call l2spline4 (cv, x, LEFT(lptr+l), BASIS(bptr))
		}
	    }
	}

	# reset vector to zero

	# accumulate right side of the matrix equation
	do l = 1, CV_NPTS(cv) {

	    CV_YNORM(cv) = CV_YNORM(cv) + w[l] * y[l] * y[l]
	    leftm1 = LEFT(lptr+l) - 1
	    bptr = bcptr + l * CV_NPTS(cv) 

	    do i = 1, CV_ORDER(cv) {
		vptr = vcptr + leftm1 + i
		VECTOR(vptr) = VECTOR(vptr) + BASIS(bptr) * w[l] * y[l]
	    }
	}

	# solve the matrix
	call choslv (CHOFAC(CV_CHOFAC(cv)), CV_ORDER(cv), CV_NCOEFF(CV),
		    VECTOR(CV_VECTOR(cv)), COEFF(CV_COEFF(cv)))
end

# semi-code for cvcoeff

# CVCOEFF -- Procedure to fetch the number and magnitude of the coefficients.

procedure cvcoeff (cv, coeff, ncoeff)

pointer	cv		# pointer to the curve fitting descriptor
real	coeff[ncoeff]	# the coefficients of the fit
int	ncoeff		# the number of coefficients

begin
	ncoeff = CV_NCOEFF(cv)
	cptr = CV_COEFF(cv) - 1
	do i = 1, ncoeff
	    coeff[i] = COEFF(cptr, i)
end

# semi-code for cvvector

include "curfit.h"

# CVVECTOR -- Procedure to evaluate the fitted curve

procedure cvvector (cv, x, npts, yfit)

pointer	cv		# pointer to the curve descriptor structure
real	x[npts]		# data x values
int	npts		# number of data points
real	yfit[npts]	# the fitted y values

begin
	do l = 1, npts {

	    # calculate the non-zero basis functions
	    switch (CV_TYPE(cv) {
	    case LEGENDRE:
		left = 1
		call legendre (cv, x[l], XBASIS(CV_XBASIS(cv)))
	    case CHEBYSHEV:
		left = 1
		call chebyshev (cv, x[l], XBASIS(CV_XBASIS(cv)))
	    case L2SPLINE4:
		call l2spline4 (cv, x[l], left, XBASIS(CV_XBASIS(cv)))
	    }

	    sum = 0.0
	    leftm1 = left - 1
	    cptr = CV_COEFF(cv) - 1
	    xptr = CV_XBASIS(cv) - 1

	    do i = 1, CV_NCOEFF(cv) {
		jj = leftm1 + i
		sum = sum + XBASIS(xptr + i) * COEFF(cptr + jj)
	    }
	}
end

# semi-code for cveval

include "curfit.h"

# CVEVAL -- Procedure to evaluate curve at a given x

real procedure cveval (cv, x)

pointer	cv		# pointer to image descriptor structure
real	x		# x value

int	left, leftm1, i
pointer	cptr, xptr
real	sum

begin
	switch (CV_TYPE(cv)) {
	case CHEBYSHEV:
	    left = 1
	    call chebyshev (cv, x, XBASIS(CV_XBASIS(cv)))
	case LEGENDRE:
	    left = 1
	    call legendre (cv, x, XBASIS(CV_XBASIS(cv)))
	case L2SPLINE4:
	    call l2spline4 (cv, x, left, XBASIS(CV_XBASIS(cv)))
	}

	sum = 0.
	leftm1 = left - 1
	cptr = CV_COEFF(cv) - 1
	xptr = CV_XBASIS(cv) - 1
	do i = 1, CV_NCOEFF(cv) {
	    jj = leftm1 + i
	    sum = sum + XBASIS(xptr + i) * COEFF(cptr + jj)
	}

	return (sum)
end

# semi-code for cverrors

include "curfit.h"

# CVERRORS -- Procedure to calculate the standard deviation of the fit and the
# standard deviations of the coefficients

procedure cverrors (cv, rms, errors)

pointer	cv		# curve descriptor
real	rms		# standard deviation of data with respect to fit
real	errors[ARB]	# errors in coefficients

begin
	# calculate the variance
	rms = CV_YNORM(cv)
	cptr = CV_COEFF(cv) - 1
	vptr = CV_VECTOR(cv) - 1
	do i = 1, CV_NCOEFF(cv)
	    rms = rms - COEFF(cptr, i) * VECTOR(vptr, i)
	rms = rms / (CV_NPTS(cv) - CV_NCOEFF(cv))

	# calculate the standard deviations
	do i = 1, CV_NCOEFF(cv) {
	    do j = 1, CV_NCOEFF(cv)
		cov[j] = 0.
	    cov[i] = 1.
	    call choslv (CHO(CV_CHOFAC(cv)), CV_ORDER(cv),
	    		CV_NCOEFF(cv), cov, cov)
	    errors[i] = sqrt (cov[i] * rms)
	}

	rms = sqrt (rms)
end

# semi-code for CVFREE

# CVFREE -- Procedure to free the curve descriptor

procedure cvfree (cv)

pointer	cv

begin
	call sfree (cv)
end

include "curfit.h"

# LEGENDRE -- Procedure to calculate the Legendre functions.

procedure legendre (cv, x, basis)

pointer	cv
real	x
real	basis[ARB]

begin
	# normalize to the range x = -1. to 1.
	xnorm = (2. * x - CV_MAXMIN(cv)) / CV_RANGE(cv)

	b[1] = 1.0
	if (CV_ORDER(cv) == 1)
	    return

	b[2] = xnorm
	if (CV_ORDER(cv) == 2)
	    return

	do i = 3, CV_ORDER(cv) {
	    ri = i
	    b[i] = ((2.*ri-3.)*xnorm*b[i-1] - (ri-2.)*b[i-2]) / (ri-1.)
	}
end

# CHEBYSHEV -- Procedure to calculate Chebyshev polynomials.

procedure chebyshev (cv, x, basis)

real	x
int	order
real	basis[ARB]

begin
	# normalize to the range -1. to 1.
	xnorm = (2. * x - CV_MAXMIN(cv)) / CV_RANGE(cv)

	b[1] = 1.
	if (CV_ORDER(cv) == 1)
	    return

	b[2] = xnorm
	if (CV_ORDER(cv) == 2)
	    return

	do i = 3, CV_ORDER(cv) {
	    ri = i
	    b[i] = 2.*xnorm*b[i-1] - b[i-2]
	}
end

define	NPTS_SPLINE	401	# Number of points in the spline lookup table 
define	INTERVALS	100	# Number of intervals per spline knot

# L2SPLINE4 -- Procedure to calculate the cubic spline functions

procedure (cv, x, left, basis)

pointer	cv
real	x
int	left
real	basis[ARB]

real	table[NPTS_SPLINE]

# data table containing the spline
include "table.dat"

begin
	xnorm = (x - CV_XMIN(cv)) / CV_SPACING(cv)
	temp = min (int (xnorm), npieces - 1)
	left = temp +  1
	xnorm = xnorm - temp

	near = int ((1. - xnorm + 0.5) * INTERVALS) + 1
	basis[1] = table[near]
	near = table[near] + INTERVALS
	basis[2] = table[near]
	near = table[near] + INTERVALS
	basis[3] = table[near]
	near = table[near] + INTERVALS
	basis[4] = table[near]
end

# CHOFAC -- Routine to calculate the Cholesky factorization of a banded
# matrix.

procedure chofac (matrix, nbands, nrows, matfac, ier)

real	matrix[nbands, nrows]
int	nbands
int	nrows
real	matfac[nbands, nrows]
int	ier

begin
	ier = 0

	if (nrows == 1) {
	    if (matrix[1,1] .gt. 0.)
	        matfac[1,1] = 1./matrix[1,1]
	    return
	}

		
	# copy matrix into matfac
	do n = 1, nrows {
	    do j = 1, nbands
		matfac[j,n] = matrix[j,n]
	}

	do n = 1, nrows {

	    # test to see if matrix is singular
	    if (matfac[1,n] + matrix[1,n] <= matrix[1,n]) {
		do j = 1, nbands
		    w[j,n] = 0.
		ier = 1
		next
	    }

	    matfac[1,n] = 1./matfac[1,n]
	    imax = min (nbands - 1, nrows - n)
	    if (imax < 1)
		next

	    jmax = imax
	    do i = 1, imax {
		ratio = matfac[i+1,n] * matfac[1,n]
		do j = 1, jmax
		    matfac[j,n+i] = matfac[j,n+i] - matfac[j+i,n] * ratio
		jmax = jmax - 1
		matfac[i+1,n] = ratio
	    }
	}
end

# CHOSLV -- Solve the matrix whose Cholesky factorization was calculated in
# CHOFAC.

procedure choslv (matfac, nbands, nrows, vector, coeff)

real	matfac[nbands,nrows]
int	nbands
int	nrows
real	vector[nrows]
real	coeff[nrows]

begin
	if (nrows == 1) {
	    coeff[1] = vector[1] * matfac[1,1]
	    return
	}

	# copy vector to coefficients
	do i = 1, nrows
	    coeff[i] = vector[i]

	# forward substitution
	nbndm1 = nbands - 1
	do n = 1, nrows {
	    jmax = min (nbndm1, nrows - n)
	    if (jmax < 1)
		next
	    do j = 1, jmax
		coeff[j+n] = coeff[j+n] - matfac[j+1,n] * b[n]
	}

	# back substitution
	for (n = nrows; n > 0; n = n - 1) {
	    coeff[n] = coeff[n] * matfac[1,n]
	    jmax = min (nbndm1, nrows - 1)
	    if (jmax >= 1) {
		do j = 1, jmax
		    coeff[n] = coeff[n] - matfac[j+1,n] * coeff[j+n]
	    }
	}

end