1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
subroutine cwidth ( w,b,nequ,ncols,integs,nbloks, d, x,iflag )
c this program is a variation of the theme in the algorithm bandet1
c by martin and wilkinson (numer.math. 9(1976)279-307). it solves
c the linear system
c a*x = b
c of nequ equations in case a is almost block diagonal with all
c blocks having ncols columns using no more storage than it takes to
c store the interesting part of a . such systems occur in the determ-
c ination of the b-spline coefficients of a spline approximation.
c
c parameters
c w on input, a two-dimensional array of size (nequ,ncols) contain-
c ing the interesting part of the almost block diagonal coeffici-
c ent matrix a (see description and example below). the array
c integs describes the storage scheme.
c on output, w contains the upper triangular factor u of the
c lu factorization of a possibly permuted version of a . in par-
c ticular, the determinant of a could now be found as
c iflag*w(1,1)*w(2,1)* ... * w(nequ,1) .
c b on input, the right side of the linear system, of length nequ.
c the contents of b are changed during execution.
c nequ number of equations in system
c ncols block width, i.e., number of columns in each block.
c integs integer array, of size (2,nequ), describing the block struct-
c ure of a .
c integs(1,i) = no. of rows in block i = nrow
c integs(2,i) = no. of elimination steps in block i
c = overhang over next block = last
c nbloks number of blocks
c d work array, to contain row sizes . if storage is scarce, the
c array x could be used in the calling sequence for d .
c x on output, contains computed solution (if iflag .ne. 0), of
c length nequ .
c iflag on output, integer
c = (-1)**(no.of interchanges during elimination)
c if a is invertible
c = 0 if a is singular
c
c ------ block structure of a ------
c the interesting part of a is taken to consist of nbloks con-
c secutive blocks, with the i-th block made up of nrowi = integs(1,i)
c consecutive rows and ncols consecutive columns of a , and with
c the first lasti = integs(2,i) columns to the left of the next block.
c these blocks are stored consecutively in the workarray w .
c for example, here is an 11th order matrix and its arrangement in
c the workarray w . (the interesting entries of a are indicated by
c their row and column index modulo 10.)
c
c --- a --- --- w ---
c
c nrow1=3
c 11 12 13 14 11 12 13 14
c 21 22 23 24 21 22 23 24
c 31 32 33 34 nrow2=2 31 32 33 34
c last1=2 43 44 45 46 43 44 45 46
c 53 54 55 56 nrow3=3 53 54 55 56
c last2=3 66 67 68 69 66 67 68 69
c 76 77 78 79 76 77 78 79
c 86 87 88 89 nrow4=1 86 87 88 89
c last3=1 97 98 99 90 nrow5=2 97 98 99 90
c last4=1 08 09 00 01 08 09 00 01
c 18 19 10 11 18 19 10 11
c last5=4
c
c for this interpretation of a as an almost block diagonal matrix,
c we have nbloks = 5 , and the integs array is
c
c i= 1 2 3 4 5
c k=
c integs(k,i) = 1 3 2 3 1 2
c 2 2 3 1 1 4
c
c -------- method --------
c gauss elimination with scaled partial pivoting is used, but mult-
c ipliers are n o t s a v e d in order to save storage. rather, the
c right side is operated on during elimination.
c the two parameters
c i p v t e q and l a s t e q
c are used to keep track of the action. ipvteq is the index of the
c variable to be eliminated next, from equations ipvteq+1,...,lasteq,
c using equation ipvteq (possibly after an interchange) as the pivot
c equation. the entries in the pivot column are a l w a y s in column
c 1 of w . this is accomplished by putting the entries in rows
c ipvteq+1,...,lasteq revised by the elimination of the ipvteq-th
c variable one to the left in w . in this way, the columns of the
c equations in a given block (as stored in w ) will be aligned with
c those of the next block at the moment when these next equations be-
c come involved in the elimination process.
c thus, for the above example, the first elimination steps proceed
c as follows.
c
c *11 12 13 14 11 12 13 14 11 12 13 14 11 12 13 14
c *21 22 23 24 *22 23 24 22 23 24 22 23 24
c *31 32 33 34 *32 33 34 *33 34 33 34
c 43 44 45 46 43 44 45 46 *43 44 45 46 *44 45 46 etc.
c 53 54 55 56 53 54 55 56 *53 54 55 56 *54 55 56
c 66 67 68 69 66 67 68 69 66 67 68 69 66 67 68 69
c . . . .
c
c in all other respects, the procedure is standard, including the
c scaled partial pivoting.
c
integer nbloks, ipvtp1, jmax
integer iflag,integs(2,nbloks),ncols,nequ, i,ii,icount,ipvteq
* ,istar,j,lastcl,lasteq,lasti,nexteq,nrowad
real b(nequ),d(nequ),w(nequ,ncols),x(nequ), awi1od,colmax
* ,ratio,sum ,rowmax,temp
iflag = 1
ipvteq = 0
lasteq = 0
c the i-loop runs over the blocks
do 50 i=1,nbloks
c
c the equations for the current block are added to those current-
c ly involved in the elimination process, by increasing lasteq
c by integs(1,i) after the rowsize of these equations has been
c recorded in the array d .
c
nrowad = integs(1,i)
do 10 icount=1,nrowad
nexteq = lasteq + icount
rowmax = 0.
do 5 j=1,ncols
5 rowmax = amax1(rowmax,abs(w(nexteq,j)))
if (rowmax .eq. 0.) go to 999
10 d(nexteq) = rowmax
lasteq = lasteq + nrowad
c
c there will be lasti = integs(2,i) elimination steps before
c the equations in the next block become involved. further,
c l a s t c l records the number of columns involved in the cur-
c rent elimination step. it starts equal to ncols when a block
c first becomes involved and then drops by one after each elim-
c ination step.
c
lastcl = ncols
lasti = integs(2,i)
do 30 icount=1,lasti
ipvteq = ipvteq + 1
if (ipvteq .lt. lasteq) go to 11
if ( abs(w(ipvteq,1))+d(ipvteq) .gt. d(ipvteq) )
* go to 50
go to 999
c
c determine the smallest i s t a r in (ipvteq,lasteq) for
c which abs(w(istar,1))/d(istar) is as large as possible, and
c interchange equations ipvteq and istar in case ipvteq
c .lt. istar .
c
11 colmax = abs(w(ipvteq,1))/d(ipvteq)
istar = ipvteq
ipvtp1 = ipvteq + 1
do 13 ii=ipvtp1,lasteq
awi1od = abs(w(ii,1))/d(ii)
if (awi1od .le. colmax) go to 13
colmax = awi1od
istar = ii
13 continue
if ( abs(w(istar,1))+d(istar) .eq. d(istar) )
* go to 999
if (istar .eq. ipvteq) go to 16
iflag = -iflag
temp = d(istar)
d(istar) = d(ipvteq)
d(ipvteq) = temp
temp = b(istar)
b(istar) = b(ipvteq)
b(ipvteq) = temp
do 14 j=1,lastcl
temp = w(istar,j)
w(istar,j) = w(ipvteq,j)
14 w(ipvteq,j) = temp
c
c subtract the appropriate multiple of equation ipvteq from
c equations ipvteq+1,...,lasteq to make the coefficient of the
c ipvteq-th unknown (presently in column 1 of w ) zero, but
c store the new coefficients in w one to the left from the old.
c
16 do 20 ii=ipvtp1,lasteq
ratio = w(ii,1)/w(ipvteq,1)
do 18 j=2,lastcl
18 w(ii,j-1) = w(ii,j) - ratio*w(ipvteq,j)
w(ii,lastcl) = 0.
20 b(ii) = b(ii) - ratio*b(ipvteq)
30 lastcl = lastcl - 1
50 continue
c
c at this point, w and b contain an upper triangular linear system
c equivalent to the original one, with w(i,j) containing entry
c (i, i-1+j ) of the coefficient matrix. solve this system by backsub-
c stitution, taking into account its block structure.
c
c i-loop over the blocks, in reverse order
i = nbloks
59 lasti = integs(2,i)
jmax = ncols - lasti
do 70 icount=1,lasti
sum = 0.
if (jmax .eq. 0) go to 61
do 60 j=1,jmax
60 sum = sum + x(ipvteq+j)*w(ipvteq,j+1)
61 x(ipvteq) = (b(ipvteq)-sum)/w(ipvteq,1)
jmax = jmax + 1
70 ipvteq = ipvteq - 1
i = i - 1
if (i .gt. 0) go to 59
return
999 iflag = 0
return
end
|