aboutsummaryrefslogtreecommitdiff
path: root/math/deboor/tautsp.f
blob: 86e8eeb4e517815bff871358a5ec365efc42541c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
subroutine tautsp ( tau, gtau, ntau, gamma, s,
     *			  break, coef, l, k, iflag )
c  from  * a practical guide to splines *  by c. de boor
constructs cubic spline interpolant to given data
c	  tau(i), gtau(i), i=1,...,ntau.
c  if  gamma .gt. 0., additional knots are introduced where needed to
c  make the interpolant more flexible locally. this avoids extraneous
c  inflection points typical of cubic spline interpolation at knots to
c  rapidly changing data.
c
c  parameters
c	     input
c  tau	    sequence of data points. must be strictly increasing.
c  gtau     corresponding sequence of function values.
c  ntau     number of data points. must be at least  4 .
c  gamma    indicates whether additional flexibility is desired.
c	   = 0., no additional knots
c	   in (0.,3.), under certain conditions on the given data at
c		 points i-1, i, i+1, and i+2, a knot is added in the
c		 i-th interval, i=2,...,ntau-2. see description of meth-
c		 od below. the interpolant gets rounded with increasing
c		 gamma. a value of  2.5  for gamma is typical.
c	   in (3.,6.), same , except that knots might also be added in
c		 intervals in which an inflection point would be permit-
c		 ted.  a value of  5.5	for gamma is typical.
c	     output
c  break, coef, l, k  give the pp-representation of the interpolant.
c	   specifically, for break(i) .le. x .le. break(i+1), the
c	 interpolant has the form
c  f(x) = coef(1,i) +dx(coef(2,i) +(dx/2)(coef(3,i) +(dx/3)coef(4,i)))
c	 with  dx = x - break(i) and i=1,...,l .
c  iflag   = 1, ok
c	   = 2, input was incorrect. a printout specifying the mistake
c	     was made.
c	     workspace
c  s	 is required, of size (ntau,6). the individual columns of this
c	 array contain the following quantities mentioned in the write-
c	 up and below.
c     s(.,1) = dtau = tau(.+1) - tau
c     s(.,2) = diag = diagonal in linear system
c     s(.,3) = u = upper diagonal in linear system
c     s(.,4) = r = right side for linear system (initially)
c	     = fsecnd = solution of linear system , namely the second
c			derivatives of interpolant at  tau
c     s(.,5) = z = indicator of additional knots
c     s(.,6) = 1/hsecnd(1,x) with x = z or = 1-z. see below.
c
c  ------  m e t h o d	------
c  on the i-th interval, (tau(i), tau(i+1)), the interpolant is of the
c  form
c  (*)	f(u(x)) = a + b*u + c*h(u,z) + d*h(1-u,1-z) ,
c  with  u = u(x) = (x - tau(i))/dtau(i). here,
c	z = z(i) = addg(i+1)/(addg(i) + addg(i+1))
c  (= .5, in case the denominator vanishes). with
c	addg(j) = abs(ddg(j)), ddg(j) = dg(j+1) - dg(j),
c	dg(j) = divdif(j) = (gtau(j+1) - gtau(j))/dtau(j)
c  and
c	h(u,z) = alpha*u**3 + (1 - alpha)*(max(((u-zeta)/(1-zeta)),0)**3
c  with
c	alpha(z) = (1-gamma/3)/zeta
c	zeta(z) = 1 - gamma*min((1 - z), 1/3)
c  thus, for 1/3 .le. z .le. 2/3,  f  is just a cubic polynomial on
c  the interval i. otherwise, it has one additional knot, at
c	  tau(i) + zeta*dtau(i) .
c  as  z  approaches  1, h(.,z) has an increasingly sharp bend	near 1,
c  thus allowing  f  to turn rapidly near the additional knot.
c     in terms of f(j) = gtau(j) and
c	fsecnd(j) = 2.derivative of  f	at  tau(j),
c  the coefficients for (*) are given as
c	a = f(i) - d
c	b = (f(i+1) - f(i)) - (c - d)
c	c = fsecnd(i+1)*dtau(i)**2/hsecnd(1,z)
c	d = fsecnd(i)*dtau(i)**2/hsecnd(1,1-z)
c  hence can be computed once fsecnd(i),i=1,...,ntau, is fixed.
c   f  is automatically continuous and has a continuous second derivat-
c  ive (except when z = 0 or 1 for some i). we determine fscnd(.) from
c  the requirement that also the first derivative of  f  be contin-
c  uous. in addition, we require that the third derivative be continuous
c  across  tau(2) and across  tau(ntau-1) . this leads to a strictly
c  diagonally dominant tridiagonal linear system for the fsecnd(i)
c  which we solve by gauss elimination without pivoting.
c
      integer iflag,k,l,ntau,	i,method,ntaum1
      real break(1),coef(4,1),gamma,gtau(ntau),s(ntau,6),tau(ntau)
     *	  ,alpha,c,d,del,denom,divdif,entry,entry3,factor,factr2,gam
     *	  ,onemg3,onemzt,ratio,sixth,temp,x,z,zeta,zt2
      real alph
      alph(x) = amin1(1.,onemg3/x)
c
c  there must be at least  4  interpolation points.
      if (ntau .ge. 4)			go to 5
c     print 600,ntau
c 600 format(8h ntau = ,i4,20h. should be .ge. 4 .)
					go to 999
c
construct delta tau and first and second (divided) differences of data
c
    5 ntaum1 = ntau - 1
      do 6 i=1,ntaum1
	 s(i,1) = tau(i+1) - tau(i)
	 if (s(i,1) .gt. 0.)		go to 6
c	 print 610,i,tau(i),tau(i+1)
c 610	 format(7h point ,i3,13h and the next,2e15.6,15h are disordered)
					go to 999
    6	 s(i+1,4) = (gtau(i+1)-gtau(i))/s(i,1)
      do 7 i=2,ntaum1
    7	 s(i,4) = s(i+1,4) - s(i,4)
c
construct system of equations for second derivatives at  tau. at each
c  interior data point, there is one continuity equation, at the first
c  and the last interior data point there is an additional one for a
c  total of  ntau  equations in  ntau  unknowns.
c
      i = 2
      s(2,2) = s(1,1)/3.
      sixth = 1./6.
      method = 2
      gam = gamma
      if (gam .le. 0.)	 method = 1
      if ( gam .le. 3.) 		go to 9
      method = 3
      gam = gam - 3.
    9 onemg3 = 1. - gam/3.
c		  ------ loop over i ------
   10 continue
c	   construct z(i) and zeta(i)
      z = .5
					go to (19,11,12),method
   11 if (s(i,4)*s(i+1,4) .lt. 0.)	go to 19
   12 temp = abs(s(i+1,4))
      denom = abs(s(i,4)) + temp
      if (denom .eq. 0.)		go to 19
      z = temp/denom
      if (abs(z - .5) .le. sixth)  z = .5
   19 s(i,5) = z
c   ******set up part of the i-th equation which depends on
c	  the i-th interval
      if (z - .5)			21,22,23
   21 zeta = gam*z
      onemzt = 1. - zeta
      zt2 = zeta**2
      alpha = alph(onemzt)
      factor = zeta/(alpha*(zt2-1.) + 1.)
      s(i,6) = zeta*factor/6.
      s(i,2) = s(i,2) + s(i,1)*((1.-alpha*onemzt)*factor/2. - s(i,6))
c     if z = 0 and the previous z = 1, then d(i) = 0. since then
c     also u(i-1) = l(i+1) = 0, its value does not matter. reset
c     d(i) = 1 to insure nonzero pivot in elimination.
      if (s(i,2) .le. 0.) s(i,2) = 1.
      s(i,3) = s(i,1)/6.
					go to 25
   22 s(i,2) = s(i,2) + s(i,1)/3.
      s(i,3) = s(i,1)/6.
					go to 25
   23 onemzt = gam*(1. - z)
      zeta = 1. - onemzt
      alpha = alph(zeta)
      factor = onemzt/(1. - alpha*zeta*(1.+onemzt))
      s(i,6) = onemzt*factor/6.
      s(i,2) = s(i,2) + s(i,1)/3.
      s(i,3) = s(i,6)*s(i,1)
   25 if (i .gt. 2)			go to 30
      s(1,5) = .5
c  ******the first two equations enforce continuity of the first and of
c	 the third derivative across tau(2).
      s(1,2) = s(1,1)/6.
      s(1,3) = s(2,2)
      entry3 = s(2,3)
      if (z - .5)			26,27,28
   26 factr2 = zeta*(alpha*(zt2-1.) + 1.)/(alpha*(zeta*zt2-1.)+1.)
      ratio = factr2*s(2,1)/s(1,2)
      s(2,2) = factr2*s(2,1) + s(1,1)
      s(2,3) = -factr2*s(1,1)
					go to 29
   27 ratio = s(2,1)/s(1,2)
      s(2,2) = s(2,1) + s(1,1)
      s(2,3) = -s(1,1)
					go to 29
   28 ratio = s(2,1)/s(1,2)
      s(2,2) = s(2,1) + s(1,1)
      s(2,3) = -s(1,1)*6.*alpha*s(2,6)
c	at this point, the first two equations read
c	       diag(1)*x1 + u(1)*x2 + entry3*x3 = r(2)
c	-ratio*diag(1)*x1 + diag(2)*x2 + u(2)*x3 = 0.
c	eliminate first unknown from second equation
   29 s(2,2) = ratio*s(1,3) + s(2,2)
      s(2,3) = ratio*entry3 + s(2,3)
      s(1,4) = s(2,4)
      s(2,4) = ratio*s(1,4)
					go to 35
   30 continue
c  ******the i-th equation enforces continuity of the first derivative
c	 across tau(i). it has been set up in statements 35 up to 40
c	 and 21 up to 25 and reads now
c	  -ratio*diag(i-1)*xi-1 + diag(i)*xi + u(i)*xi+1 = r(i) .
c	 eliminate (i-1)st unknown from this equation
      s(i,2) = ratio*s(i-1,3) + s(i,2)
      s(i,4) = ratio*s(i-1,4) + s(i,4)
c
c  ******set up the part of the next equation which depends on the
c	 i-th interval.
   35 if (z - .5)			36,37,38
   36 ratio = -s(i,6)*s(i,1)/s(i,2)
      s(i+1,2) = s(i,1)/3.
					go to 40
   37 ratio = -(s(i,1)/6.)/s(i,2)
      s(i+1,2) = s(i,1)/3.
					go to 40
   38 ratio = -(s(i,1)/6.)/s(i,2)
      s(i+1,2) = s(i,1)*((1.-zeta*alpha)*factor/2. - s(i,6))
c	  ------  end of i loop ------
   40 i = i+1
      if (i .lt. ntaum1)		go to 10
      s(i,5) = .5
c
c	 ------  last two equations  ------
c  the last two equations enforce continuity of third derivative and
c  of first derivative across  tau(ntau-1).
      entry = ratio*s(i-1,3) + s(i,2) + s(i,1)/3.
      s(i+1,2) = s(i,1)/6.
      s(i+1,4) = ratio*s(i-1,4) + s(i,4)
      if (z - .5)			41,42,43
   41 ratio = s(i,1)*6.*s(i-1,6)*alpha/s(i-1,2)
      s(i,2) = ratio*s(i-1,3) + s(i,1) + s(i-1,1)
      s(i,3) = -s(i-1,1)
					go to 45
   42 ratio = s(i,1)/s(i-1,2)
      s(i,2) = ratio*s(i-1,3) + s(i,1) + s(i-1,1)
      s(i,3) = -s(i-1,1)
					go to 45
   43 factr2 = onemzt*(alpha*(onemzt**2-1.)+1.)/
     *		     (alpha*(onemzt**3-1.)+1.)
      ratio = factr2*s(i,1)/s(i-1,2)
      s(i,2) = ratio*s(i-1,3) + factr2*s(i-1,1) + s(i,1)
      s(i,3) = -factr2*s(i-1,1)
c     at this point, the last two equations read
c	      diag(i)*xi + u(i)*xi+1 = r(i)
c      -ratio*diag(i)*xi + diag(i+1)*xi+1 = r(i+1)
c     eliminate xi from last equation
   45 s(i,4) = ratio*s(i-1,4)
      ratio = -entry/s(i,2)
      s(i+1,2) = ratio*s(i,3) + s(i+1,2)
      s(i+1,4) = ratio*s(i,4) + s(i+1,4)
c
c	 ------ back substitution ------
c
      s(ntau,4) = s(ntau,4)/s(ntau,2)
   50	 s(i,4) = (s(i,4) - s(i,3)*s(i+1,4))/s(i,2)
	 i = i - 1
	 if (i .gt. 1)			go to 50
      s(1,4) = (s(1,4)-s(1,3)*s(2,4)-entry3*s(3,4))/s(1,2)
c
c	 ------ construct polynomial pieces ------
c
      break(1) = tau(1)
      l = 1
      do 70 i=1,ntaum1
	 coef(1,l) = gtau(i)
	 coef(3,l) = s(i,4)
	 divdif = (gtau(i+1)-gtau(i))/s(i,1)
	 z = s(i,5)
	 if (z - .5)			61,62,63
   61	 if (z .eq. 0.) 		go to 65
	 zeta = gam*z
	 onemzt = 1. - zeta
	 c = s(i+1,4)/6.
	 d = s(i,4)*s(i,6)
	 l = l + 1
	 del = zeta*s(i,1)
	 break(l) = tau(i) + del
	 zt2 = zeta**2
	 alpha = alph(onemzt)
	 factor = onemzt**2*alpha
	 coef(1,l) = gtau(i) + divdif*del
     *		   + s(i,1)**2*(d*onemzt*(factor-1.)+c*zeta*(zt2-1.))
	 coef(2,l) = divdif + s(i,1)*(d*(1.-3.*factor)+c*(3.*zt2-1.))
	 coef(3,l) = 6.*(d*alpha*onemzt + c*zeta)
	 coef(4,l) = 6.*(c - d*alpha)/s(i,1)
	 coef(4,l-1) = coef(4,l) - 6.*d*(1.-alpha)/(del*zt2)
	 coef(2,l-1) = coef(2,l) - del*(coef(3,l) -(del/2.)*coef(4,l-1))
					go to 68
   62	 coef(2,l) = divdif - s(i,1)*(2.*s(i,4) + s(i+1,4))/6.
	 coef(4,l) = (s(i+1,4)-s(i,4))/s(i,1)
					go to 68
   63	 onemzt = gam*(1. - z)
	 if (onemzt .eq. 0.)		go to 65
	 zeta = 1. - onemzt
	 alpha = alph(zeta)
	 c = s(i+1,4)*s(i,6)
	 d = s(i,4)/6.
	 del = zeta*s(i,1)
	 break(l+1) = tau(i) + del
	 coef(2,l) = divdif - s(i,1)*(2.*d + c)
	 coef(4,l) = 6.*(c*alpha - d)/s(i,1)
	 l = l + 1
	 coef(4,l) = coef(4,l-1) + 6.*(1.-alpha)*c/(s(i,1)*onemzt**3)
	 coef(3,l) = coef(3,l-1) + del*coef(4,l-1)
	 coef(2,l) = coef(2,l-1)+del*(coef(3,l-1)+(del/2.)*coef(4,l-1))
	 coef(1,l) = coef(1,l-1)+del*(coef(2,l-1)+(del/2.)*(coef(3,l-1)
     *			+(del/3.)*coef(4,l-1)))
					go to 68
   65	 coef(2,l) = divdif
	 coef(3,l) = 0.
	 coef(4,l) = 0.
   68	 l = l + 1
   70	 break(l) = tau(i+1)
      l = l - 1
      k = 4
      iflag = 1
					return
  999 iflag = 2
					return
      end