1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
|
subroutine tautsp ( tau, gtau, ntau, gamma, s,
* break, coef, l, k, iflag )
c from * a practical guide to splines * by c. de boor
constructs cubic spline interpolant to given data
c tau(i), gtau(i), i=1,...,ntau.
c if gamma .gt. 0., additional knots are introduced where needed to
c make the interpolant more flexible locally. this avoids extraneous
c inflection points typical of cubic spline interpolation at knots to
c rapidly changing data.
c
c parameters
c input
c tau sequence of data points. must be strictly increasing.
c gtau corresponding sequence of function values.
c ntau number of data points. must be at least 4 .
c gamma indicates whether additional flexibility is desired.
c = 0., no additional knots
c in (0.,3.), under certain conditions on the given data at
c points i-1, i, i+1, and i+2, a knot is added in the
c i-th interval, i=2,...,ntau-2. see description of meth-
c od below. the interpolant gets rounded with increasing
c gamma. a value of 2.5 for gamma is typical.
c in (3.,6.), same , except that knots might also be added in
c intervals in which an inflection point would be permit-
c ted. a value of 5.5 for gamma is typical.
c output
c break, coef, l, k give the pp-representation of the interpolant.
c specifically, for break(i) .le. x .le. break(i+1), the
c interpolant has the form
c f(x) = coef(1,i) +dx(coef(2,i) +(dx/2)(coef(3,i) +(dx/3)coef(4,i)))
c with dx = x - break(i) and i=1,...,l .
c iflag = 1, ok
c = 2, input was incorrect. a printout specifying the mistake
c was made.
c workspace
c s is required, of size (ntau,6). the individual columns of this
c array contain the following quantities mentioned in the write-
c up and below.
c s(.,1) = dtau = tau(.+1) - tau
c s(.,2) = diag = diagonal in linear system
c s(.,3) = u = upper diagonal in linear system
c s(.,4) = r = right side for linear system (initially)
c = fsecnd = solution of linear system , namely the second
c derivatives of interpolant at tau
c s(.,5) = z = indicator of additional knots
c s(.,6) = 1/hsecnd(1,x) with x = z or = 1-z. see below.
c
c ------ m e t h o d ------
c on the i-th interval, (tau(i), tau(i+1)), the interpolant is of the
c form
c (*) f(u(x)) = a + b*u + c*h(u,z) + d*h(1-u,1-z) ,
c with u = u(x) = (x - tau(i))/dtau(i). here,
c z = z(i) = addg(i+1)/(addg(i) + addg(i+1))
c (= .5, in case the denominator vanishes). with
c addg(j) = abs(ddg(j)), ddg(j) = dg(j+1) - dg(j),
c dg(j) = divdif(j) = (gtau(j+1) - gtau(j))/dtau(j)
c and
c h(u,z) = alpha*u**3 + (1 - alpha)*(max(((u-zeta)/(1-zeta)),0)**3
c with
c alpha(z) = (1-gamma/3)/zeta
c zeta(z) = 1 - gamma*min((1 - z), 1/3)
c thus, for 1/3 .le. z .le. 2/3, f is just a cubic polynomial on
c the interval i. otherwise, it has one additional knot, at
c tau(i) + zeta*dtau(i) .
c as z approaches 1, h(.,z) has an increasingly sharp bend near 1,
c thus allowing f to turn rapidly near the additional knot.
c in terms of f(j) = gtau(j) and
c fsecnd(j) = 2.derivative of f at tau(j),
c the coefficients for (*) are given as
c a = f(i) - d
c b = (f(i+1) - f(i)) - (c - d)
c c = fsecnd(i+1)*dtau(i)**2/hsecnd(1,z)
c d = fsecnd(i)*dtau(i)**2/hsecnd(1,1-z)
c hence can be computed once fsecnd(i),i=1,...,ntau, is fixed.
c f is automatically continuous and has a continuous second derivat-
c ive (except when z = 0 or 1 for some i). we determine fscnd(.) from
c the requirement that also the first derivative of f be contin-
c uous. in addition, we require that the third derivative be continuous
c across tau(2) and across tau(ntau-1) . this leads to a strictly
c diagonally dominant tridiagonal linear system for the fsecnd(i)
c which we solve by gauss elimination without pivoting.
c
integer iflag,k,l,ntau, i,method,ntaum1
real break(1),coef(4,1),gamma,gtau(ntau),s(ntau,6),tau(ntau)
* ,alpha,c,d,del,denom,divdif,entry,entry3,factor,factr2,gam
* ,onemg3,onemzt,ratio,sixth,temp,x,z,zeta,zt2
real alph
alph(x) = amin1(1.,onemg3/x)
c
c there must be at least 4 interpolation points.
if (ntau .ge. 4) go to 5
c print 600,ntau
c 600 format(8h ntau = ,i4,20h. should be .ge. 4 .)
go to 999
c
construct delta tau and first and second (divided) differences of data
c
5 ntaum1 = ntau - 1
do 6 i=1,ntaum1
s(i,1) = tau(i+1) - tau(i)
if (s(i,1) .gt. 0.) go to 6
c print 610,i,tau(i),tau(i+1)
c 610 format(7h point ,i3,13h and the next,2e15.6,15h are disordered)
go to 999
6 s(i+1,4) = (gtau(i+1)-gtau(i))/s(i,1)
do 7 i=2,ntaum1
7 s(i,4) = s(i+1,4) - s(i,4)
c
construct system of equations for second derivatives at tau. at each
c interior data point, there is one continuity equation, at the first
c and the last interior data point there is an additional one for a
c total of ntau equations in ntau unknowns.
c
i = 2
s(2,2) = s(1,1)/3.
sixth = 1./6.
method = 2
gam = gamma
if (gam .le. 0.) method = 1
if ( gam .le. 3.) go to 9
method = 3
gam = gam - 3.
9 onemg3 = 1. - gam/3.
c ------ loop over i ------
10 continue
c construct z(i) and zeta(i)
z = .5
go to (19,11,12),method
11 if (s(i,4)*s(i+1,4) .lt. 0.) go to 19
12 temp = abs(s(i+1,4))
denom = abs(s(i,4)) + temp
if (denom .eq. 0.) go to 19
z = temp/denom
if (abs(z - .5) .le. sixth) z = .5
19 s(i,5) = z
c ******set up part of the i-th equation which depends on
c the i-th interval
if (z - .5) 21,22,23
21 zeta = gam*z
onemzt = 1. - zeta
zt2 = zeta**2
alpha = alph(onemzt)
factor = zeta/(alpha*(zt2-1.) + 1.)
s(i,6) = zeta*factor/6.
s(i,2) = s(i,2) + s(i,1)*((1.-alpha*onemzt)*factor/2. - s(i,6))
c if z = 0 and the previous z = 1, then d(i) = 0. since then
c also u(i-1) = l(i+1) = 0, its value does not matter. reset
c d(i) = 1 to insure nonzero pivot in elimination.
if (s(i,2) .le. 0.) s(i,2) = 1.
s(i,3) = s(i,1)/6.
go to 25
22 s(i,2) = s(i,2) + s(i,1)/3.
s(i,3) = s(i,1)/6.
go to 25
23 onemzt = gam*(1. - z)
zeta = 1. - onemzt
alpha = alph(zeta)
factor = onemzt/(1. - alpha*zeta*(1.+onemzt))
s(i,6) = onemzt*factor/6.
s(i,2) = s(i,2) + s(i,1)/3.
s(i,3) = s(i,6)*s(i,1)
25 if (i .gt. 2) go to 30
s(1,5) = .5
c ******the first two equations enforce continuity of the first and of
c the third derivative across tau(2).
s(1,2) = s(1,1)/6.
s(1,3) = s(2,2)
entry3 = s(2,3)
if (z - .5) 26,27,28
26 factr2 = zeta*(alpha*(zt2-1.) + 1.)/(alpha*(zeta*zt2-1.)+1.)
ratio = factr2*s(2,1)/s(1,2)
s(2,2) = factr2*s(2,1) + s(1,1)
s(2,3) = -factr2*s(1,1)
go to 29
27 ratio = s(2,1)/s(1,2)
s(2,2) = s(2,1) + s(1,1)
s(2,3) = -s(1,1)
go to 29
28 ratio = s(2,1)/s(1,2)
s(2,2) = s(2,1) + s(1,1)
s(2,3) = -s(1,1)*6.*alpha*s(2,6)
c at this point, the first two equations read
c diag(1)*x1 + u(1)*x2 + entry3*x3 = r(2)
c -ratio*diag(1)*x1 + diag(2)*x2 + u(2)*x3 = 0.
c eliminate first unknown from second equation
29 s(2,2) = ratio*s(1,3) + s(2,2)
s(2,3) = ratio*entry3 + s(2,3)
s(1,4) = s(2,4)
s(2,4) = ratio*s(1,4)
go to 35
30 continue
c ******the i-th equation enforces continuity of the first derivative
c across tau(i). it has been set up in statements 35 up to 40
c and 21 up to 25 and reads now
c -ratio*diag(i-1)*xi-1 + diag(i)*xi + u(i)*xi+1 = r(i) .
c eliminate (i-1)st unknown from this equation
s(i,2) = ratio*s(i-1,3) + s(i,2)
s(i,4) = ratio*s(i-1,4) + s(i,4)
c
c ******set up the part of the next equation which depends on the
c i-th interval.
35 if (z - .5) 36,37,38
36 ratio = -s(i,6)*s(i,1)/s(i,2)
s(i+1,2) = s(i,1)/3.
go to 40
37 ratio = -(s(i,1)/6.)/s(i,2)
s(i+1,2) = s(i,1)/3.
go to 40
38 ratio = -(s(i,1)/6.)/s(i,2)
s(i+1,2) = s(i,1)*((1.-zeta*alpha)*factor/2. - s(i,6))
c ------ end of i loop ------
40 i = i+1
if (i .lt. ntaum1) go to 10
s(i,5) = .5
c
c ------ last two equations ------
c the last two equations enforce continuity of third derivative and
c of first derivative across tau(ntau-1).
entry = ratio*s(i-1,3) + s(i,2) + s(i,1)/3.
s(i+1,2) = s(i,1)/6.
s(i+1,4) = ratio*s(i-1,4) + s(i,4)
if (z - .5) 41,42,43
41 ratio = s(i,1)*6.*s(i-1,6)*alpha/s(i-1,2)
s(i,2) = ratio*s(i-1,3) + s(i,1) + s(i-1,1)
s(i,3) = -s(i-1,1)
go to 45
42 ratio = s(i,1)/s(i-1,2)
s(i,2) = ratio*s(i-1,3) + s(i,1) + s(i-1,1)
s(i,3) = -s(i-1,1)
go to 45
43 factr2 = onemzt*(alpha*(onemzt**2-1.)+1.)/
* (alpha*(onemzt**3-1.)+1.)
ratio = factr2*s(i,1)/s(i-1,2)
s(i,2) = ratio*s(i-1,3) + factr2*s(i-1,1) + s(i,1)
s(i,3) = -factr2*s(i-1,1)
c at this point, the last two equations read
c diag(i)*xi + u(i)*xi+1 = r(i)
c -ratio*diag(i)*xi + diag(i+1)*xi+1 = r(i+1)
c eliminate xi from last equation
45 s(i,4) = ratio*s(i-1,4)
ratio = -entry/s(i,2)
s(i+1,2) = ratio*s(i,3) + s(i+1,2)
s(i+1,4) = ratio*s(i,4) + s(i+1,4)
c
c ------ back substitution ------
c
s(ntau,4) = s(ntau,4)/s(ntau,2)
50 s(i,4) = (s(i,4) - s(i,3)*s(i+1,4))/s(i,2)
i = i - 1
if (i .gt. 1) go to 50
s(1,4) = (s(1,4)-s(1,3)*s(2,4)-entry3*s(3,4))/s(1,2)
c
c ------ construct polynomial pieces ------
c
break(1) = tau(1)
l = 1
do 70 i=1,ntaum1
coef(1,l) = gtau(i)
coef(3,l) = s(i,4)
divdif = (gtau(i+1)-gtau(i))/s(i,1)
z = s(i,5)
if (z - .5) 61,62,63
61 if (z .eq. 0.) go to 65
zeta = gam*z
onemzt = 1. - zeta
c = s(i+1,4)/6.
d = s(i,4)*s(i,6)
l = l + 1
del = zeta*s(i,1)
break(l) = tau(i) + del
zt2 = zeta**2
alpha = alph(onemzt)
factor = onemzt**2*alpha
coef(1,l) = gtau(i) + divdif*del
* + s(i,1)**2*(d*onemzt*(factor-1.)+c*zeta*(zt2-1.))
coef(2,l) = divdif + s(i,1)*(d*(1.-3.*factor)+c*(3.*zt2-1.))
coef(3,l) = 6.*(d*alpha*onemzt + c*zeta)
coef(4,l) = 6.*(c - d*alpha)/s(i,1)
coef(4,l-1) = coef(4,l) - 6.*d*(1.-alpha)/(del*zt2)
coef(2,l-1) = coef(2,l) - del*(coef(3,l) -(del/2.)*coef(4,l-1))
go to 68
62 coef(2,l) = divdif - s(i,1)*(2.*s(i,4) + s(i+1,4))/6.
coef(4,l) = (s(i+1,4)-s(i,4))/s(i,1)
go to 68
63 onemzt = gam*(1. - z)
if (onemzt .eq. 0.) go to 65
zeta = 1. - onemzt
alpha = alph(zeta)
c = s(i+1,4)*s(i,6)
d = s(i,4)/6.
del = zeta*s(i,1)
break(l+1) = tau(i) + del
coef(2,l) = divdif - s(i,1)*(2.*d + c)
coef(4,l) = 6.*(c*alpha - d)/s(i,1)
l = l + 1
coef(4,l) = coef(4,l-1) + 6.*(1.-alpha)*c/(s(i,1)*onemzt**3)
coef(3,l) = coef(3,l-1) + del*coef(4,l-1)
coef(2,l) = coef(2,l-1)+del*(coef(3,l-1)+(del/2.)*coef(4,l-1))
coef(1,l) = coef(1,l-1)+del*(coef(2,l-1)+(del/2.)*(coef(3,l-1)
* +(del/3.)*coef(4,l-1)))
go to 68
65 coef(2,l) = divdif
coef(3,l) = 0.
coef(4,l) = 0.
68 l = l + 1
70 break(l) = tau(i+1)
l = l - 1
k = 4
iflag = 1
return
999 iflag = 2
return
end
|