aboutsummaryrefslogtreecommitdiff
path: root/math/gsurfit/gs_b1eval.gx
blob: 6f474aa3d6c5f19b9c5b9d9f7f56842644d69500 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.

# GS_B1POL -- Procedure to evaluate all the non-zero polynomial functions
# for a single point and given order.

procedure $tgs_b1pol (x, order, k1, k2, basis)

PIXEL	x		# data point
int	order		# order of polynomial, order = 1, constant
PIXEL	k1, k2		# nomalizing constants, dummy in this case
PIXEL	basis[ARB]	# basis functions

int	i

begin
	basis[1] = 1.
	if (order == 1)
	    return

	basis[2] = x
	if (order == 2)
	    return

	do i = 3, order
	    basis[i] = x * basis[i-1]

end

# GS_B1LEG -- Procedure to evaluate all the non-zero Legendre functions for
# a single point and given order.

procedure $tgs_b1leg (x, order, k1, k2, basis)

PIXEL	x		# data point
int	order		# order of polynomial, order = 1, constant
PIXEL	k1, k2		# normalizing constants
PIXEL	basis[ARB]	# basis functions

int	i
PIXEL	ri, xnorm

begin
	basis[1] = 1.
	if (order == 1)
	    return

	xnorm = (x + k1) * k2 
	basis[2] = xnorm
	if (order == 2)
	    return

	do i = 3, order {
	    ri = i
	    basis[i] = ((2. * ri - 3.) * xnorm * basis[i-1] -
		       (ri - 2.) * basis[i-2]) / (ri - 1.)	
	}
end


# GS_B1CHEB -- Procedure to evaluate all the non zero Chebyshev function
# for a given x and order.

procedure $tgs_b1cheb (x, order, k1, k2, basis)

PIXEL	x		# number of data points
int	order		# order of polynomial, 1 is a constant
PIXEL	k1, k2		# normalizing constants
PIXEL	basis[ARB]	# array of basis functions

int	i
PIXEL	xnorm

begin
	basis[1] = 1.
	if (order == 1)
	    return

	xnorm = (x + k1) * k2
	basis[2] = xnorm
	if (order == 2)
	    return

	do i = 3, order
	    basis[i] = 2. * xnorm * basis[i-1] - basis[i-2]
end