aboutsummaryrefslogtreecommitdiff
path: root/math/gsurfit/gs_f1devald.x
blob: 6f20e7e7b047a7a43b174669484e8b60e2a9cc82 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.

# GS_1DEVPOLY -- Procedure to evaulate a 1D polynomial

procedure dgs_1devpoly (coeff, x, yfit, npts, order, k1, k2)

double	coeff[ARB]		# EV array of coefficients
double	x[npts]			# x values of points to be evaluated
double	yfit[npts]		# the fitted points
int	npts			# number of points to be evaluated
int	order			# order of the polynomial, 1 = constant
double	k1, k2			# normalizing constants

int	i
pointer	sp, temp

begin
	# fit a constant
	call amovkd (coeff[1], yfit, npts)
	if (order == 1)
	    return

	# fit a linear function
	call altmd (x, yfit, npts, coeff[2], coeff[1])
	if (order == 2)
	    return

	call smark (sp)
	call salloc (temp, npts, TY_DOUBLE)

	# accumulate the output vector
	call amovd (x, Memd[temp], npts)
	do i = 3, order {
	    call amuld (Memd[temp], x, Memd[temp], npts)
	    call awsud (yfit, Memd[temp], yfit, npts, 1.0d0, coeff[i])
	}

	call sfree (sp)

end

# GS_1DEVCHEB -- Procedure to evaluate a Chebyshev polynomial assuming that
# the coefficients have been calculated. 

procedure dgs_1devcheb (coeff, x, yfit, npts, order, k1, k2)

double	coeff[ARB]		# EV array of coefficients
double	x[npts]			# x values of points to be evaluated
double	yfit[npts]		# the fitted points
int	npts			# number of points to be evaluated
int	order			# order of the polynomial, 1 = constant
double	k1, k2			# normalizing constants

int	i
pointer	sx, pn, pnm1, pnm2
pointer sp
double	c1, c2

begin
	# fit a constant
	call amovkd (coeff[1], yfit, npts)
	if (order == 1)
	    return

	# fit a linear function
	c1 = k2 * coeff[2]
	c2 = c1 * k1 + coeff[1]
	call altmd (x, yfit, npts, c1, c2)
	if (order == 2)
	    return

	# allocate temporary space
	call smark (sp)
	call salloc (sx, npts, TY_DOUBLE)
	call salloc (pn, npts, TY_DOUBLE)
	call salloc (pnm1, npts, TY_DOUBLE)
	call salloc (pnm2, npts, TY_DOUBLE)

	# a higher order polynomial
	call amovkd (1.0d0, Memd[pnm2], npts)
	call altad (x, Memd[sx], npts, k1, k2)
	call amovd (Memd[sx], Memd[pnm1], npts)
	call amulkd (Memd[sx], 2.0D0, Memd[sx], npts)
	do i = 3, order {
	    call amuld (Memd[sx], Memd[pnm1], Memd[pn], npts)
	    call asubd (Memd[pn], Memd[pnm2], Memd[pn], npts)
	    if (i < order) {
	        call amovd (Memd[pnm1], Memd[pnm2], npts)
	        call amovd (Memd[pn], Memd[pnm1], npts)
	    }
	    call amulkd (Memd[pn], coeff[i], Memd[pn], npts)
	    call aaddd (yfit, Memd[pn], yfit, npts)
	}

	# free temporary space
	call sfree (sp)

end


# GS_1DEVLEG -- Procedure to evaluate a Legendre polynomial assuming that
# the coefficients have been calculated. 

procedure dgs_1devleg (coeff, x, yfit, npts, order, k1, k2)

double	coeff[ARB]		# EV array of coefficients
double	x[npts]			# x values of points to be evaluated
double	yfit[npts]		# the fitted points
int	npts			# number of data points
int	order			# order of the polynomial, 1 = constant
double	k1, k2			# normalizing constants

int	i
pointer	sx, pn, pnm1, pnm2
pointer	sp
double	ri, ri1, ri2

begin
	# fit a constant
	call amovkd (coeff[1], yfit, npts)
	if (order == 1)
	    return

	# fit a linear function
	ri1 = k2 * coeff[2]
	ri2 = ri1 * k1 + coeff[1]
	call altmd (x, yfit, npts, ri1, ri2)
	if (order == 2)
	    return

	# allocate temporary space
	call smark (sp)
	call salloc (sx, npts, TY_DOUBLE)
	call salloc (pn, npts, TY_DOUBLE)
	call salloc (pnm1, npts, TY_DOUBLE)
	call salloc (pnm2, npts, TY_DOUBLE)

	# a higher order polynomial
	call amovkd (1.0d0, Memd[pnm2], npts)
	call altad (x, Memd[sx], npts, k1, k2)
	call amovd (Memd[sx], Memd[pnm1], npts)
	do i = 3, order {
	    ri = i
	    ri1 = (2. * ri - 3.) / (ri - 1.)
	    ri2 = - (ri - 2.) / (ri - 1.)
	    call amuld (Memd[sx], Memd[pnm1], Memd[pn], npts)
	    call awsud (Memd[pn], Memd[pnm2], Memd[pn], npts, ri1, ri2)
	    if (i < order) {
	        call amovd (Memd[pnm1], Memd[pnm2], npts)
	        call amovd (Memd[pn], Memd[pnm1], npts)
	    }
	    call amulkd (Memd[pn], coeff[i], Memd[pn], npts)
	    call aaddd (yfit, Memd[pn], yfit, npts)
	}

	# free temporary space
	call sfree (sp)

end