1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
include <math/gsurfit.h>
# GS_EVPOLY -- Procedure to evluate the polynomials
procedure dgs_evpoly (coeff, x, y, zfit, npts, xterms, xorder, yorder, k1x,
k2x, k1y, k2y)
double coeff[ARB] # 1D array of coefficients
double x[npts] # x values of points to be evaluated
double y[npts]
double zfit[npts] # the fitted points
int npts # number of points to be evaluated
int xterms # cross terms ?
int xorder,yorder # order of the polynomials in x and y
double k1x, k2x # normalizing constants
double k1y, k2y
int i, k, cptr, maxorder, xincr
pointer sp, xb, yb, xbptr, ybptr, accum
begin
# fit a constant
if (xorder == 1 && yorder == 1) {
call amovkd (coeff[1], zfit, npts)
return
}
# fit first order in x and y
if (xorder == 2 && yorder == 1) {
call altmd (x, zfit, npts, coeff[2], coeff[1])
return
}
if (yorder == 2 && xorder == 1) {
call altmd (x, zfit, npts, coeff[2], coeff[1])
return
}
if (xorder == 2 && yorder == 2 && xterms == NO) {
do i = 1, npts
zfit[i] = coeff[1] + x[i] * coeff[2] + y[i] * coeff[3]
return
}
# allocate temporary space for the basis functions
call smark (sp)
call salloc (xb, xorder * npts, TY_DOUBLE)
call salloc (yb, yorder * npts, TY_DOUBLE)
call salloc (accum, npts, TY_DOUBLE)
# calculate basis functions
call dgs_bpol (x, npts, xorder, k1x, k2x, Memd[xb])
call dgs_bpol (y, npts, yorder, k1y, k2y, Memd[yb])
# accumulate the output vector
cptr = 0
call aclrd (zfit, npts)
if (xterms != GS_XNONE) {
maxorder = max (xorder + 1, yorder + 1)
xincr = xorder
ybptr = yb
do i = 1, yorder {
call aclrd (Memd[accum], npts)
xbptr = xb
do k = 1, xincr {
call awsud (Memd[accum], Memd[xbptr], Memd[accum], npts,
1.0d0, coeff[cptr+k])
xbptr = xbptr + npts
}
call gs_asumvpd (Memd[accum], Memd[ybptr], zfit, zfit, npts)
cptr = cptr + xincr
ybptr = ybptr + npts
switch (xterms) {
case GS_XHALF:
if ((i + xorder + 1) > maxorder)
xincr = xincr - 1
default:
;
}
}
} else {
xbptr = xb
do k = 1, xorder {
call awsud (zfit, Memd[xbptr], zfit, npts, 1.0d0, coeff[k])
xbptr = xbptr + npts
}
ybptr = yb + npts
do k = 1, yorder - 1 {
call awsud (zfit, Memd[ybptr], zfit, npts, 1.0d0,
coeff[xorder+k])
ybptr = ybptr + npts
}
}
call sfree (sp)
end
# GS_EVCHEB -- Procedure to evaluate a Chebyshev polynomial assuming that
# the coefficients have been calculated.
procedure dgs_evcheb (coeff, x, y, zfit, npts, xterms, xorder, yorder, k1x,
k2x, k1y, k2y)
double coeff[ARB] # 1D array of coefficients
double x[npts] # x values of points to be evaluated
double y[npts]
double zfit[npts] # the fitted points
int npts # number of points to be evaluated
int xterms # cross terms ?
int xorder,yorder # order of the polynomials in x and y
double k1x, k2x # normalizing constants
double k1y, k2y
int i, k, cptr, maxorder, xincr
pointer sp, xb, yb, xbptr, ybptr, accum
begin
# fit a constant
if (xorder == 1 && yorder == 1) {
call amovkd (coeff[1], zfit, npts)
return
}
# allocate temporary space for the basis functions
call smark (sp)
call salloc (xb, xorder * npts, TY_DOUBLE)
call salloc (yb, yorder * npts, TY_DOUBLE)
call salloc (accum, npts, TY_DOUBLE)
# calculate basis functions
call dgs_bcheb (x, npts, xorder, k1x, k2x, Memd[xb])
call dgs_bcheb (y, npts, yorder, k1y, k2y, Memd[yb])
# accumulate thr output vector
cptr = 0
call aclrd (zfit, npts)
if (xterms != GS_XNONE) {
maxorder = max (xorder + 1, yorder + 1)
xincr = xorder
ybptr = yb
do i = 1, yorder {
call aclrd (Memd[accum], npts)
xbptr = xb
do k = 1, xincr {
call awsud (Memd[accum], Memd[xbptr], Memd[accum], npts,
1.0d0, coeff[cptr+k])
xbptr = xbptr + npts
}
call gs_asumvpd (Memd[accum], Memd[ybptr], zfit, zfit, npts)
cptr = cptr + xincr
ybptr = ybptr + npts
switch (xterms) {
case GS_XHALF:
if ((i + xorder + 1) > maxorder)
xincr = xincr - 1
default:
;
}
}
} else {
xbptr = xb
do k = 1, xorder {
call awsud (zfit, Memd[xbptr], zfit, npts, 1.0d0, coeff[k])
xbptr = xbptr + npts
}
ybptr = yb + npts
do k = 1, yorder - 1 {
call awsud (zfit, Memd[ybptr], zfit, npts, 1.0d0,
coeff[xorder+k])
ybptr = ybptr + npts
}
}
# free temporary space
call sfree (sp)
end
# GS_EVLEG -- Procedure to evaluate a Chebyshev polynomial assuming that
# the coefficients have been calculated.
procedure dgs_evleg (coeff, x, y, zfit, npts, xterms, xorder, yorder, k1x, k2x,
k1y, k2y)
double coeff[ARB] # 1D array of coefficients
double x[npts] # x values of points to be evaluated
double y[npts]
double zfit[npts] # the fitted points
int npts # number of points to be evaluated
int xterms # cross terms ?
int xorder,yorder # order of the polynomials in x and y
double k1x, k2x # normalizing constants
double k1y, k2y
int i, k, cptr, maxorder, xincr
pointer sp, xb, yb, accum, xbptr, ybptr
begin
# fit a constant
if (xorder == 1 && yorder == 1) {
call amovkd (coeff[1], zfit, npts)
return
}
# allocate temporary space for the basis functions
call smark (sp)
call salloc (xb, xorder * npts, TY_DOUBLE)
call salloc (yb, yorder * npts, TY_DOUBLE)
call salloc (accum, npts, TY_DOUBLE)
# calculate basis functions
call dgs_bleg (x, npts, xorder, k1x, k2x, Memd[xb])
call dgs_bleg (y, npts, yorder, k1y, k2y, Memd[yb])
cptr = 0
call aclrd (zfit, npts)
if (xterms != GS_XNONE) {
maxorder = max (xorder + 1, yorder + 1)
xincr = xorder
ybptr = yb
do i = 1, yorder {
xbptr = xb
call aclrd (Memd[accum], npts)
do k = 1, xincr {
call awsud (Memd[accum], Memd[xbptr], Memd[accum], npts,
1.0d0, coeff[cptr+k])
xbptr = xbptr + npts
}
call gs_asumvpd (Memd[accum], Memd[ybptr], zfit, zfit, npts)
cptr = cptr + xincr
ybptr = ybptr + npts
switch (xterms) {
case GS_XHALF:
if ((i + xorder + 1) > maxorder)
xincr = xincr - 1
default:
;
}
}
} else {
xbptr = xb
do k = 1, xorder {
call awsud (zfit, Memd[xbptr], zfit, npts, 1.0d0, coeff[k])
xbptr = xbptr + npts
}
ybptr = yb + npts
do k = 1, yorder - 1 {
call awsud (zfit, Memd[ybptr], zfit, npts, 1.0d0,
coeff[xorder+k])
ybptr = ybptr + npts
}
}
# free temporary space
call sfree (sp)
end
# GS_ASUMVP -- Procedure to add the product of two vectors to another vector
procedure gs_asumvpd (a, b, c, d, npts)
double a[ARB] # first input vector
double b[ARB] # second input vector
double c[ARB] # third vector
double d[ARB] # output vector
int npts # number of points
int i
begin
do i = 1, npts
d[i] = c[i] + a[i] * b[i]
end
|