1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
include "im2interpdef.h"
include <math/iminterp.h>
# MRIDER -- Procedure to evaluate the derivatives of the interpolant
# without the storage overhead required by the sequential version.
# The derivatives are stored such that der[1,1] = the value of the
# interpolant at x and y, der[2,1] = the first derivative in x and
# der[2,1] = the first derivative in y.
procedure mrider (x, y, datain, nxpix, nypix, len_datain, der, nxder, nyder,
len_der, interp_type)
real x[ARB] # x value
real y[ARB] # y value
real datain[len_datain,ARB] # data array
int nxpix # number of x data points
int nypix # number of y data points
int len_datain # row length of datain
real der[len_der, ARB] # array of derivatives
int nxder # number of derivatives in x
int nyder # number of derivatives in y
int len_der # row length of der, len_der >= nxder
int interp_type # interpolant type
int nx, ny, nxterms, nyterms, row_length
int index, xindex, yindex, first_row, last_row
int i, j, ii, jj, kx, ky
pointer tmp
real coeff[SPLPTS+3,SPLPTS+3], pcoeff[MAX_NTERMS,MAX_NTERMS]
real pctemp[MAX_NTERMS,MAX_NTERMS], sum[MAX_NTERMS]
real hold21, hold12, hold22, accum, deltax, deltay, tmpx[4], tmpy[4]
real xmin, xmax, ymin, ymax, sx, sy, tx, ty
errchk malloc, calloc, mfree
begin
if (nxder < 1 || nyder < 1)
return
# zero the derivatives
do j = 1, nyder {
do i = 1, nxder
der[i,j] = 0.
}
switch (interp_type) {
case II_BINEAREST:
der[1,1] = datain[int (x[1]+.5), int (y[1]+.5)]
return
case II_BISINC, II_BILSINC:
call ii_bisincder (x[1], y[1], der, nxder, nyder, len_der, datain,
0, len_datain, nypix, NSINC, DX, DY)
return
case II_BILINEAR:
nx = x[1]
sx = x[1] - nx
tx = 1. - sx
ny = y[1]
sy = y[1] - ny
ty = 1. - sy
# protect against the case where x = nxpix and/or y = nypix
if (nx >= nxpix)
hold21 = 2. * datain[nx,ny] - datain[nx-1,ny]
else
hold21 = datain[nx+1,ny]
if (ny >= nypix)
hold12 = 2. * datain[nx,ny] - datain[nx,ny-1]
else
hold12 = datain[nx,ny+1]
if (nx >= nxpix && ny >= nypix)
hold22 = 2. * hold21 - (2. * datain[nx,ny-1] -
datain[nx-1,ny-1])
else if (nx >= nxpix)
hold22 = 2. * hold12 - datain[nx-1,ny+1]
else if (ny >= nypix)
hold 22 = 2. * hold21 - datain[nx+1,ny-1]
else
hold22 = datain[nx+1,ny+1]
# evaluate the derivatives
der[1,1] = tx * ty * datain[nx,ny] + sx * ty * hold21 +
sy * tx * hold12 + sx * sy * hold22
if (nxder > 1)
der[2,1] = - ty * datain[nx,ny] + ty * hold21 -
sy * hold12 + sy * hold22
if (nyder > 1)
der[1,2] = - tx * datain[nx,ny] - sx * hold21 +
tx * hold12 + sx * hold22
if (nxder > 1 && nyder > 1)
der[2,2] = datain[nx,ny] - hold21 - hold12 + hold22
return
case II_BIDRIZZLE:
call ii_bidriz1 (datain, 0, len_datain, x, y, der[1,1], 1, BADVAL)
if (nxder > 1) {
xmax = max (x[1], x[2], x[3], x[4])
xmin = min (x[1], x[2], x[3], x[4])
ymax = max (y[1], y[2], y[3], y[4])
ymin = min (y[1], y[2], y[3], y[4])
deltax = xmax - xmin
if (deltax == 0.0)
der[2,1] = 0.0
else {
tmpx[1] = xmin; tmpy[1] = ymin
tmpx[2] = (xmax - xmin) / 2.0; tmpy[2] = ymin
tmpx[3] = (xmax - xmin) / 2.0; tmpy[3] = ymax
tmpx[4] = xmin; tmpy[4] = ymax
call ii_bidriz1 (datain, 0, len_datain, tmpx, tmpy,
accum, 1, BADVAL)
tmpx[1] = (xmax - xmin) / 2.0; tmpy[1] = ymin
tmpx[2] = xmax; tmpy[2] = ymin
tmpx[3] = xmax; tmpy[3] = ymax
tmpx[4] = (xmax - xmin) / 2.0; tmpy[4] = ymax
call ii_bidriz1 (datain, 0, len_datain, tmpx, tmpy,
der[2,1], 1, BADVAL)
der[2,1] = 2.0 * (der[2,1] - accum) / deltax
}
}
if (nyder > 1) {
deltay = ymax - ymin
if (deltay == 0.0)
der[1,2] = 0.0
else {
tmpx[1] = xmin; tmpy[1] = ymin
tmpx[2] = xmax; tmpy[2] = ymin
tmpx[3] = xmax; tmpy[3] = (ymax - ymin) / 2.0
tmpx[4] = xmin; tmpy[4] = (ymax - ymin) / 2.0
call ii_bidriz1 (datain, 0, len_datain, tmpx, tmpy,
accum, 1, BADVAL)
tmpx[1] = xmin; tmpy[1] = (ymax - ymin) / 2.0
tmpx[2] = xmax; tmpy[2] = (ymax - ymin) / 2.0
tmpx[3] = xmax; tmpy[3] = ymax
tmpx[4] = xmin; tmpy[4] = ymax
call ii_bidriz1 (datain, 0, len_datain, tmpx, tmpy,
der[1,2], 1, BADVAL)
der[1,2] = 2.0 * (der[1,2] - accum) / deltay
}
}
return
case II_BIPOLY3:
row_length = SPLPTS + 3
nxterms = 4
nyterms = 4
nx = x[1]
ny = y[1]
sx = x[1] - nx
sy = y[1] - ny
# use boundary projection to extend the data rows
yindex = 1
for (j = ny - 1; j <= ny + 2; j = j + 1) {
# check that the data row is defined
if (j >= 1 && j <= nypix) {
# extend the rows
xindex = 1
for (i = nx - 1; i <= nx + 2; i = i + 1) {
if (i < 1)
coeff[xindex,yindex] = 2. * datain[1,j] -
datain[2-i,j]
else if (i > nxpix)
coeff[xindex,yindex] = 2. * datain[nxpix,j] -
datain[2*nxpix-i,j]
else
coeff[xindex,yindex] = datain[i,j]
xindex = xindex + 1
}
} else if (j == (nypix + 2)) {
# allow for the final row
xindex = 1
for (i = nx - 1; i <= nx + 2; i = i + 1) {
if (i < 1)
coeff[xindex,nyterms] = 2. * datain[1,nypix-2] -
datain[2-i,nypix-2]
else if (i > nxpix)
coeff[xindex,nyterms] = 2. * datain[nxpix,nypix-2] -
datain[2*nxpix-i,nypix-2]
else
coeff[xindex,nyterms] = datain[i,nypix-2]
xindex = xindex + 1
}
}
yindex = yindex + 1
}
# project columns
first_row = max (1, 3 - ny)
if (first_row > 1) {
for (j = 1; j < first_row; j = j + 1)
call awsur (coeff[1, first_row], coeff[1, 2*first_row-j],
coeff[1,j], nxterms, 2., -1.)
}
last_row = min (nxterms, nypix - ny + 2)
if (last_row < nxterms) {
for (j = last_row + 1; j <= nxterms - 1; j = j + 1)
call awsur (coeff[1,last_row], coeff[1,2*last_row-j],
coeff[1,j], nxterms, 2., -1.)
if (last_row == 2)
call awsur (coeff[1,last_row], coeff[1,4], coeff[1,4],
nxterms, 2., -1.)
else
call awsur (coeff[1,last_row], coeff[1,2*last_row-4],
coeff[1,4], nxterms, 2., -1.)
}
# calculate the coefficients of the bicubic polynomial
call ii_pcpoly3 (coeff, 2, row_length, pcoeff, MAX_NTERMS)
case II_BIPOLY5:
row_length = SPLPTS + 3
nxterms = 6
nyterms = 6
nx = x[1]
ny = y[1]
sx = x[1] - nx
sy = y[1] - ny
# extend rows of data
yindex = 1
for (j = ny - 2; j <= ny + 3; j = j + 1) {
# select the rows containing data
if (j >= 1 && j <= nypix) {
# extend the rows
xindex = 1
for (i = nx - 2; i <= nx + 3; i = i + 1) {
if (i < 1)
coeff[xindex,yindex] = 2. * datain[1,j] -
datain[2-i,j]
else if (i > nxpix)
coeff[xindex,yindex] = 2. * datain[nxpix,j] -
datain[2*nxpix-i,j]
else
coeff[xindex,yindex] = datain[i,j]
xindex = xindex + 1
}
} else if (j == (ny + 3)) {
# extend the rows
xindex = 1
for (i = nx - 2; i <= nx + 3; i = i + 1) {
if (i < 1)
coeff[xindex,yindex] = 2. * datain[1,nypix-3] -
datain[2-i,nypix-3]
else if (i > nxpix)
coeff[xindex,yindex] = 2. * datain[nxpix,nypix-3] -
datain[2*nxpix-i,nypix-3]
else
coeff[xindex,yindex] = datain[i,nypix-3]
xindex = xindex + 1
}
}
yindex = yindex + 1
}
# project columns
first_row = max (1, 4 - ny)
if (first_row > 1) {
for (j = 1; j < first_row; j = j + 1)
call awsur (coeff[1,first_row], coeff[1,2*first_row-j],
coeff[1,j], nxterms, 2., -1.)
}
last_row = min (nxterms, nypix - ny + 3)
if (last_row < nxterms) {
for (j = last_row + 1; j <= nxterms - 1; j = j + 1)
call awsur (coeff[1,last_row], coeff[1,2*last_row-j],
coeff[1,j], nxterms, 2., -1.)
if (last_row == 3)
call awsur (coeff[1,last_row], coeff[1,6], coeff[1,6],
nxterms, 2., -1.)
else
call awsur (coeff[1,last_row], coeff[1,2*last_row-6],
coeff[1,6], nxterms, 2., -1.)
}
# caculate the polynomial coeffcients
call ii_pcpoly5 (coeff, 3, row_length, pcoeff, MAX_NTERMS)
case II_BISPLINE3:
row_length = SPLPTS + 3
nxterms = 4
nyterms = 4
nx = x[1]
ny = y[1]
sx = x[1] - nx
sy = y[1] - ny
# allocate space for temporary array and 0 file
call calloc (tmp, row_length * row_length, TY_REAL)
ky = 0
# maximum number of points used in each direction is SPLPTS
for (j = ny - SPLPTS/2 + 1; j <= ny + SPLPTS/2; j = j + 1) {
if (j < 1 || j > nypix)
;
else {
ky = ky + 1
if (ky == 1)
yindex = ny - j + 1
kx = 0
for (i = nx - SPLPTS/2 + 1; i <= nx + SPLPTS/2; i = i + 1) {
if (i < 1 || i > nxpix)
;
else {
kx = kx + 1
if (kx == 1)
xindex = nx - i + 1
coeff[kx+1,ky+1] = datain[i,j]
}
}
coeff[1,ky+1] = 0.
coeff[kx+2,ky+1] = 0.
coeff[kx+3,ky+1] = 0.
}
}
# zero out 1st and last 2 rows
call amovkr (0., coeff[1,1], kx+3)
call amovkr (0., coeff[1,ky+2], kx+3)
call amovkr (0., coeff[1,ky+3],kx+3)
# calculate the spline coefficients
call ii_spline2d (coeff, Memr[tmp], kx, ky+2, row_length,
row_length)
call ii_spline2d (Memr[tmp], coeff, ky, kx+2, row_length,
row_length)
# calculate the polynomial coefficients
index = (yindex - 1) * row_length + xindex + 1
call ii_pcspline3 (coeff, index, row_length, pcoeff, MAX_NTERMS)
# free space
call mfree (tmp, TY_REAL)
}
# evaluate the derivatives of the higher order interpolants
do j = 1, nyder {
# set pctemp
do jj = nyterms, j, -1 {
do ii = 1, nxterms
pctemp[ii,jj] = pcoeff[ii,jj]
}
do i = 1, nxder {
# accumulate the partial sums in x
do jj = nyterms, j, -1 {
sum[jj] = pctemp[nxterms,jj]
do ii = nxterms - 1, i, -1
sum[jj] = pctemp[ii,jj] + sum[jj] * sx
}
# accumulate the sum in y
accum = sum[nyterms]
do jj = nyterms - 1, j, -1
accum = sum[jj] + accum * sy
# evaulate the derivative
der[i,j] = accum
# differentiate in x
do jj = nyterms, j, -1 {
do ii = nxterms, i + 1, -1
pctemp[ii,jj] = (ii - i) * pctemp[ii,jj]
}
}
# differentiate in y
do jj = 1, nxterms {
do ii = nyterms, j + 1, -1
pcoeff[jj,ii] = (ii - j) * pcoeff[jj,ii]
}
}
end
|