1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
include "im2interpdef.h"
include <math/iminterp.h>
# MRIEVAL -- Procedure to evaluate the 2D interpolant at a given value
# of x and y. MRIEVAL allows the interpolation of a few interpolated
# points without the computing time and storage required for the
# sequential version. The routine assumes that 1 <= x <= nxpix and
# 1 <= y <= nypix.
real procedure mrieval (x, y, datain, nxpix, nypix, len_datain, interp_type)
real x[ARB] # x value
real y[ARB] # y value
real datain[len_datain,ARB] # data array
int nxpix # number of x data points
int nypix # number of y data points
int len_datain # row length of datain
int interp_type # interpolant type
int nx, ny, nterms, row_length
int xindex, yindex, first_row, last_row
int kx, ky
int i, j
pointer tmp
real coeff[SPLPTS+3,SPLPTS+3]
real hold21, hold12, hold22
real sx, sy, tx, ty
real xval, yval, value
errchk malloc, calloc, mfree
begin
switch (interp_type) {
case II_BINEAREST:
return (datain[int (x[1]+0.5), int (y[1]+0.5)])
case II_BILINEAR:
nx = x[1]
sx = x[1] - nx
tx = 1. - sx
ny = y[1]
sy = y[1] - ny
ty = 1. - sy
# protect against the case where x = nxpix and/or y = nypix
if (nx >= nxpix)
hold21 = 2. * datain[nx,ny] - datain[nx-1,ny]
else
hold21 = datain[nx+1,ny]
if (ny >= nypix)
hold12 = 2. * datain[nx,ny] - datain[nx,ny-1]
else
hold12 = datain[nx,ny+1]
if (nx >= nxpix && ny >= nypix)
hold22 = 2. * hold21 - (2. * datain[nx,ny-1] -
datain[nx-1,ny-1])
else if (nx >= nxpix)
hold22 = 2. * hold12 - datain[nx-1,ny+1]
else if (ny >= nypix)
hold22 = 2. * hold21 - datain[nx+1,ny-1]
else
hold22 = datain[nx+1,ny+1]
# evaluate the interpolant
value = tx * ty * datain[nx,ny] + sx * ty * hold21 +
sy * tx * hold12 + sx * sy * hold22
return (value)
case II_BIDRIZZLE:
call ii_bidriz1 (datain, 0, len_datain, x, y, value, 1, BADVAL)
return (value)
case II_BIPOLY3:
row_length = SPLPTS + 3
nterms = 4
nx = x[1]
ny = y[1]
# major problem is that near the edge the interior polynomial
# must be defined
# use boundary projection to extend the data rows
yindex = 1
for (j = ny - 1; j <= ny + 2; j = j + 1) {
# check that the data row is defined
if (j >= 1 && j <= nypix) {
# extend the rows
xindex = 1
for (i = nx - 1; i <= nx + 2; i = i + 1) {
if (i < 1)
coeff[xindex,yindex] = 2. * datain[1,j] -
datain[2-i,j]
else if (i > nxpix)
coeff[xindex,yindex] = 2. * datain[nxpix,j] -
datain[2*nxpix-i,j]
else
coeff[xindex,yindex] = datain[i,j]
xindex = xindex + 1
}
} else if (j == (ny + 2)) {
# extend the rows
xindex = 1
for (i = nx - 1; i <= nx + 2; i = i + 1) {
if (i < 1)
coeff[xindex,yindex] = 2. * datain[1,nypix-2] -
datain[2-i,nypix-2]
else if (i > nxpix)
coeff[xindex,yindex] = 2. * datain[nxpix,nypix-2] -
datain[2*nxpix-i,nypix-2]
else
coeff[xindex,yindex] = datain[i,nypix-2]
xindex = xindex + 1
}
}
yindex = yindex + 1
}
# project columns
first_row = max (1, 3 - ny)
if (first_row > 1) {
for (j = 1; j < first_row; j = j + 1)
call awsur (coeff[1, first_row], coeff[1, 2*first_row-j],
coeff[1,j], nterms, 2., -1.)
}
last_row = min (nterms, nypix - ny + 2)
if (last_row < nterms) {
for (j = last_row + 1; j <= nterms - 1; j = j + 1)
call awsur (coeff[1,last_row], coeff[1,2*last_row-j],
coeff[1,j], nterms, 2., -1.)
if (last_row == 2)
call awsur (coeff[1,last_row], coeff[1,4], coeff[1,4],
nterms, 2., -1.)
else
call awsur (coeff[1,last_row], coeff[1,2*last_row-4],
coeff[1,4], nterms, 2., -1.)
}
# center the x value and call evaluation routine
xval = 2 + (x[1] - nx)
yval = 2 + (y[1] - ny)
call ii_bipoly3 (coeff, 0, row_length, xval, yval, value, 1)
return (value)
case II_BIPOLY5:
row_length = SPLPTS + 3
nterms = 6
nx = x[1]
ny = y[1]
# major problem is to define interior polynomial near the edge
# loop over the rows of data
yindex = 1
for (j = ny - 2; j <= ny + 3; j = j + 1) {
# select the rows containing data
if (j >= 1 && j <= nypix) {
# extend the rows
xindex = 1
for (i = nx - 2; i <= nx + 3; i = i + 1) {
if (i < 1)
coeff[xindex,yindex] = 2. * datain[1,j] -
datain[2-i,j]
else if (i > nxpix)
coeff[xindex,yindex] = 2. * datain[nxpix,j] -
datain[2*nxpix-i,j]
else
coeff[xindex,yindex] = datain[i,j]
xindex = xindex + 1
}
} else if (j == (ny + 3)) {
# extend the rows
xindex = 1
for (i = nx - 2; i <= nx + 3; i = i + 1) {
if (i < 1)
coeff[xindex,yindex] = 2. * datain[1,nypix-3] -
datain[2-i,nypix-3]
else if (i > nxpix)
coeff[xindex,yindex] = 2. * datain[nxpix,nypix-3] -
datain[2*nxpix-i,nypix-3]
else
coeff[xindex,yindex] = datain[i,nypix-3]
xindex = xindex + 1
}
}
yindex = yindex + 1
}
# project columns
first_row = max (1, 4 - ny)
if (first_row > 1) {
for (j = 1; j < first_row; j = j + 1)
call awsur (coeff[1,first_row], coeff[1,2*first_row-j],
coeff[1,j], nterms, 2., -1.)
}
last_row = min (nterms, nypix - ny + 3)
if (last_row < nterms) {
for (j = last_row + 1; j <= nterms - 1; j = j + 1)
call awsur (coeff[1,last_row], coeff[1,2*last_row-j],
coeff[1,j], nterms, 2., -1.)
if (last_row == 3)
call awsur (coeff[1,last_row], coeff[1,6], coeff[1,6],
nterms, 2., -1.)
else
call awsur (coeff[1,last_row], coeff[1,2*last_row-6],
coeff[1,6], nterms, 2., -1.)
}
# call evaluation routine
xval = 3 + (x[1] - nx)
yval = 3 + (y[1] - ny)
call ii_bipoly5 (coeff, 0, row_length, xval, yval, value, 1)
return (value)
case II_BISPLINE3:
row_length = SPLPTS + 3
nx = x[1]
ny = y[1]
# allocate space for temporary array and 0 file
call calloc (tmp, row_length * row_length, TY_REAL)
ky = 0
# maximum number of points used in each direction is SPLPTS
for (j = ny - SPLPTS/2 + 1; j <= ny + SPLPTS/2; j = j + 1) {
if (j < 1 || j > nypix)
;
else {
ky = ky + 1
if (ky == 1)
yindex = ny - j + 1
kx = 0
for (i = nx - SPLPTS/2 + 1; i <= nx + SPLPTS/2; i = i + 1) {
if (i < 1 || i > nxpix)
;
else {
kx = kx + 1
if (kx == 1)
xindex = nx - i + 1
coeff[kx+1,ky+1] = datain[i,j]
}
}
coeff[1,ky+1] = 0.
coeff[kx+2,ky+1] = 0.
coeff[kx+3,ky+1] = 0.
}
}
# zero out 1st and last 2 rows
call amovkr (0., coeff[1,1], kx+3)
call amovkr (0., coeff[1,ky+2], kx+3)
call amovkr (0., coeff[1,ky+3],kx+3)
# calculate the spline coefficients
call ii_spline2d (coeff, Memr[tmp], kx, ky+2, row_length,
row_length)
call ii_spline2d (Memr[tmp], coeff, ky, kx+2, row_length,
row_length)
# evaluate spline
xval = xindex + 1 + (x[1] - nx)
yval = yindex + 1 + (y[1] - ny)
call ii_bispline3 (coeff, 0, row_length, xval, yval, value, 1)
# free space
call mfree (tmp, TY_REAL)
return (value)
case II_BISINC, II_BILSINC:
call ii_bisinc (datain, 0, len_datain, nypix, x, y, value, 1,
NSINC, DX, DY)
return (value)
}
end
|