1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
include <mach.h>
include "im2interpdef.h"
include <math/iminterp.h>
# MSIGRL -- Procedure to integrate the 2D interpolant over a specified area.
# The x and y arrays are assumed to describe a polygon which is the domain over
# which the integration is to be performed. The x and y must describe a closed
# curve and npts must be >= 4 with the last vertex equal to the first vertex.
# The routine uses the technique of separation of variables. The restriction on
# the polygon is that horizontal lines have at most one segment in common with
# the domain of integration. Polygons which do not fit this restriction can be
# split into one or more polygons before calling msigrl and the results can
# then be summed.
real procedure msigrl (msi, x, y, npts)
pointer msi # pointer to the interpolant descriptor structure
real x[npts] # array of x values
real y[npts] # array of y values
int npts # number of points which describe the boundary
int i, interp_type, nylmin, nylmax, offset
pointer x1lim, x2lim, xintegrl, ptr
real xmin, xmax, ymin, ymax, accum
real ii_1dinteg()
begin
# set up 1D interpolant type
switch (MSI_TYPE(msi)) {
case II_BINEAREST:
interp_type = II_NEAREST
case II_BILINEAR:
interp_type = II_LINEAR
case II_BIDRIZZLE:
interp_type = II_DRIZZLE
case II_BIPOLY3:
interp_type = II_POLY3
case II_BIPOLY5:
interp_type = II_POLY5
case II_BISPLINE3:
interp_type = II_SPLINE3
case II_BISINC:
interp_type = II_SINC
case II_BILSINC:
interp_type = II_LSINC
}
# set up temporary storage for x limits and the x integrals
call calloc (x1lim, MSI_NYCOEFF(msi), TY_REAL)
call calloc (x2lim, MSI_NYCOEFF(msi), TY_REAL)
call calloc (xintegrl, MSI_NYCOEFF(msi), TY_REAL)
# offset of first data point from edge of coefficient array
offset = mod (MSI_FSTPNT(msi), MSI_NXCOEFF(msi))
# convert the (x,y) points which describe the polygon into
# two arrays of x limits x1lim and x2lim and two y limits ymin and ymax
call ii_find_limits (x, y, npts, 0, 0, MSI_NYCOEFF(msi),
Memr[x1lim+offset], Memr[x2lim+offset], ymin, ymax, nylmin, nylmax)
nylmin = nylmin + offset
nylmax = nylmax + offset
# integrate in x
ptr = MSI_COEFF(msi) + offset + (nylmin - 1) * MSI_NXCOEFF(msi)
do i = nylmin, nylmax {
xmin = min (Memr[x1lim+i-1], Memr[x2lim+i-1])
xmax = max (Memr[x1lim+i-1], Memr[x2lim+i-1])
Memr[xintegrl+i-1] = ii_1dinteg (COEFF(ptr), MSI_NXCOEFF(msi),
xmin, xmax, interp_type, MSI_NSINC(msi), DX, MSI_XPIXFRAC(msi))
ptr = ptr + MSI_NXCOEFF(msi)
}
# integrate in y
if (interp_type == II_SPLINE3) {
call amulkr (Memr[xintegrl], 6.0, Memr[xintegrl], MSI_NYCOEFF(msi))
accum = ii_1dinteg (Memr[xintegrl+offset], MSI_NYCOEFF(msi), ymin,
ymax, II_NEAREST, MSI_NSINC(msi), DY, MSI_YPIXFRAC(msi))
} else {
accum = ii_1dinteg (Memr[xintegrl+offset], MSI_NYCOEFF(msi), ymin,
ymax, II_NEAREST, MSI_NSINC(msi), DY, MSI_YPIXFRAC(msi))
}
# free space
call mfree (xintegrl, TY_REAL)
call mfree (x1lim, TY_REAL)
call mfree (x2lim, TY_REAL)
return (accum)
end
# II_FIND_LIMITS -- Procedure to transform a set of (x,y)'s describing a
# polygon into a set of limits.
procedure ii_find_limits (x, y, npts, xboff, xeoff, max_nylines, x1lim, x2lim,
ymin, ymax, nylmin, nylmax)
real x[npts] # array of x values
real y[npts] # array of y values
int npts # number of data points
int xboff, xeoff # boundary extension limits
int max_nylines # max number of lines to integrate
real x1lim[ARB] # array of x1 limits
real x2lim[ARB] # array of x2 limits
real ymin # minimum y value for integration
real ymax # maximum y value for integration
int nylmin # minimum line number for x integration
int nylmax # maximum line number for x integration
int i, ninter
pointer sp, xintr, yintr
real xmin, xmax, lx, ld
int ii_pyclip()
begin
call smark (sp)
call salloc (xintr, npts, TY_REAL)
call salloc (yintr, npts, TY_REAL)
# find x and y limits and their indicess
call alimr (x, npts, xmin, xmax)
call alimr (y, npts, ymin, ymax)
# calculate the line limits for integration
nylmin = max (1, min (int (ymin + 0.5) - xboff, max_nylines))
nylmax = min (max_nylines, max (1, int (ymax + 0.5) + xeoff))
# initialize
lx = xmax - xmin
# calculate the limits
for (i = nylmin; i <= nylmax; i = i + 1) {
if (ymin > i)
ld = min (i + 0.5, ymax) * lx
else if (ymax < i)
ld = max (i - 0.5, ymin) * lx
else
ld = i * lx
ninter = ii_pyclip (x, y, Memr[xintr], Memr[yintr], npts, lx, ld)
if (ninter <= 0) {
x1lim[i] = xmin
x2lim[i] = xmin
} else {
x1lim[i] = min (Memr[xintr], Memr[xintr+1])
x2lim[i] = max (Memr[xintr], Memr[xintr+1])
}
}
call sfree (sp)
end
# II_YCLIP -- Procedure to determine the intersection points of a
# horizontal image line with an arbitrary polygon.
int procedure ii_pyclip (xver, yver, xintr, yintr, nver, lx, ld)
real xver[ARB] # x vertex coords
real yver[ARB] # y vertex coords
real xintr[ARB] # x intersection coords
real yintr[ARB] # y intersection coords
int nver # number of vertices
real lx, ld # equation of image line
int i, nintr
real u1, u2, u1u2, dx, dy, dd, xa, ya, wa
begin
nintr = 0
u1 = - lx * yver[1] + ld
do i = 2, nver {
u2 = - lx * yver[i] + ld
u1u2 = u1 * u2
# Test whether polygon line segment intersects image line or not.
if (u1u2 <= 0.0) {
# Compute the intersection coords.
if (u1 != 0.0 && u2 != 0.0) {
dy = yver[i-1] - yver[i]
dx = xver[i-1] - xver[i]
dd = xver[i-1] * yver[i] - yver[i-1] * xver[i]
xa = (dx * ld - lx * dd)
ya = dy * ld
wa = dy * lx
nintr = nintr + 1
xintr[nintr] = xa / wa
yintr[nintr] = ya / wa
# Test for collinearity.
} else if (u1 == 0.0 && u2 == 0.0) {
nintr = nintr + 1
xintr[nintr] = xver[i-1]
yintr[nintr] = yver[i-1]
nintr = nintr + 1
xintr[nintr] = xver[i]
yintr[nintr] = yver[i]
} else if (u1 != 0.0) {
if (i == 1) {
dy = (yver[2] - yver[1])
dd = (yver[nver-1] - yver[1])
} else if (i == nver) {
dy = (yver[2] - yver[nver])
dd = dy * (yver[nver-1] - yver[nver])
} else {
dy = (yver[i+1] - yver[i])
dd = dy * (yver[i-1] - yver[i])
}
if (dy != 0.0) {
nintr = nintr + 1
xintr[nintr] = xver[i]
yintr[nintr] = yver[i]
}
if (dd > 0.0) {
nintr = nintr + 1
xintr[nintr] = xver[i]
yintr[nintr] = yver[i]
}
}
}
u1 = u2
}
return (nintr)
end
|