1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
|
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.
.help
arider -- random interpolator returns derivatives
First looks at type of interpolator requested, then calls routine
to evaluate.
No error traps are included -- unreasonable values for the number of
data points or the x position will either produce hard errors or garbage.
.endhelp
procedure arider(x, datain, n, derivs, nderiv, interptype)
include "interpdef.h"
real x # need 1 <= x <= n
real datain[ARB] # data values
int n # number of data values
real derivs[ARB] # derivatives out -- beware derivs[1] is
# function value
int nderiv # total number of values returned in derivs
int interptype
int i, j, k, nt, nd, nx
real pc[6], ac, s
begin
if(nderiv <= 0)
return
# zero out derivs array
do i = 1, nderiv
derivs[i] = 0.
switch (interptype) {
case IT_NEAREST :
derivs[1] = datain[int(x + 0.5)]
return
case IT_LINEAR :
nx = x
if( nx >= n )
nx = nx - 1
derivs[1] = (x - nx) * datain[nx+1] + (nx + 1 - x) * datain[nx]
if(nderiv >= 2)
derivs[2] = datain[nx+1] - datain[nx]
return
# The other cases call subroutines to generate polynomial coeff.
case IT_POLY3 :
call iidr_poly3(x, datain, n, pc)
nt = 4
case IT_POLY5 :
call iidr_poly5(x, datain, n, pc)
nt = 6
case IT_SPLINE3 :
call iidr_spline3(x, datain, n, pc)
nt = 4
}
nx = x
s = x - nx
nd = nderiv
if (nderiv > nt)
nd = nt
do k = 1,nd {
ac = pc[nt - k + 1] # evluate using nested multiplication
do j = nt - k, 1, -1
ac = pc[j] + s * ac
derivs[k] = ac
do j = 1, nt - k # differentiate
pc[j] = j * pc[j + 1]
}
end
procedure iidr_poly3(x, datain, n, pc)
real x
real datain[ARB]
int n
real pc[ARB]
int i, k, nx, nt
real a[4]
begin
nx = x
# The major complication is that near the edge interior polynomial
# must somehow be defined.
k = 0
for(i = nx - 1; i <= nx + 2; i = i + 1){
k = k + 1
# project data points into temporary array
if ( i < 1 )
a[k] = 2. * datain[1] - datain[2 - i]
else if ( i > n )
a[k] = 2. * datain[n] - datain[2 * n - i]
else
a[k] = datain[i]
}
nt = 4
# generate diffrence table for Newton's form
do k = 1, nt-1
do i = 1, nt-k
a[i] = (a[i+1] - a[i]) / k
# shift to generate polynomial coefficients
do k = nt,2,-1
do i = 2,k
a[i] = a[i] + a[i-1] * (k - i - nt/2)
do i = 1,nt
pc[i] = a[nt+1-i]
return
end
procedure iidr_poly5(x, datain, n, pc)
real x
real datain[ARB]
int n
real pc[ARB]
int i, k, nx, nt
real a[6]
begin
nx = x
# The major complication is that near the edge interior polynomial
# must somehow be defined.
k = 0
for(i = nx - 2; i <= nx + 3; i = i + 1){
k = k + 1
# project data points into temporary array
if ( i < 1 )
a[k] = 2. * datain[1] - datain[2 - i]
else if ( i > n )
a[k] = 2. * datain[n] - datain[2 * n - i]
else
a[k] = datain[i]
}
nt = 6
# generate diffrence table for Newton's form
do k = 1, nt-1
do i = 1, nt-k
a[i] = (a[i+1] - a[i]) / k
# shift to generate polynomial coefficients
do k = nt,2,-1
do i = 2,k
a[i] = a[i] + a[i-1] * (k - i - nt/2)
do i = 1,nt
pc[i] = a[nt+1-i]
return
end
procedure iidr_spline3(x, datain, n, pc)
real x
real datain[ARB]
int n
real pc[ARB]
int i, k, nx, px
real temp[SPLPTS+2], bcoeff[SPLPTS+2], h
begin
nx = x
h = x - nx
k = 0
# maximum number of points used is SPLPTS
for(i = nx - SPLPTS/2 + 1; i <= nx + SPLPTS/2; i = i + 1){
if(i < 1 || i > n)
;
else {
k = k + 1
if(k == 1)
px = nx - i + 1
bcoeff[k+1] = datain[i]
}
}
bcoeff[1] = 0.
bcoeff[k+2] = 0.
# Use special routine for cardinal splines.
call iif_spline(bcoeff, temp, k)
px = px + 1
pc[1] = bcoeff[px-1] + 4. * bcoeff[px] + bcoeff[px+1]
pc[2] = 3. * (bcoeff[px+1] - bcoeff[px-1])
pc[3] = 3. * (bcoeff[px-1] - 2. * bcoeff[px] + bcoeff[px+1])
pc[4] = -bcoeff[px-1] + 3. * bcoeff[px] - 3. * bcoeff[px+1] +
bcoeff[px+2]
return
end
|