1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
|
c subroutine nnls (a,mda,m,n,b,x,rnorm,w,zz,index,mode)
c c.l.lawson and r.j.hanson, jet propulsion laboratory, 1973 june 15
c to appear in 'solving least squares problems', prentice-hall, 1974
c
c ********** nonnegative least squares **********
c
c given an m by n matrix, a, and an m-vector, b, compute an
c n-vector, x, which solves the least squares problem
c
c a * x = b subject to x .ge. 0
c
c a(),mda,m,n mda is the first dimensioning parameter for the
c array, a(). on entry a() contains the m by n
c matrix, a. on exit a() contains
c the product matrix, q*a , where q is an
c m by m orthogonal matrix generated implicitly by
c this subroutine.
c b() on entry b() contains the m-vector, b. on exit b() con-
c tains q*b.
c x() on entry x() need not be initialized. on exit x() will
c contain the solution vector.
c rnorm on exit rnorm contains the euclidean norm of the
c residual vector.
c w() an n-array of working space. on exit w() will contain
c the dual solution vector. w will satisfy w(i) = 0.
c for all i in set p and w(i) .le. 0. for all i in set z
c zz() an m-array of working space.
c index() an integer working array of length at least n.
c on exit the contents of this array define the sets
c p and z as follows..
c
c index(1) thru index(nsetp) = set p.
c index(iz1) thru index(iz2) = set z.
c iz1 = nsetp + 1 = npp1
c iz2 = n
c mode this is a success-failure flag with the following
c meanings.
c 1 the solution has been computed successfully.
c 2 the dimensions of the problem are bad.
c either m .le. 0 or n .le. 0.
c 3 iteration count exceeded. more than 3*n iterations.
c
subroutine nnls (a,mda,m,n,b,x,rnorm,w,zz,index,mode)
dimension a(mda,n), b(m), x(n), w(n), zz(m)
integer index(n)
zero=0.
one=1.
two=2.
factor=0.01
c
mode=1
if (m.gt.0.and.n.gt.0) go to 10
mode=2
return
10 iter=0
itmax=3*n
c
c initialize the arrays index() and x().
c
do 20 i=1,n
x(i)=zero
20 index(i)=i
c
iz2=n
iz1=1
nsetp=0
npp1=1
c ****** main loop begins here ******
30 continue
c quit if all coefficients are already in the solution.
c or if m cols of a have been triangularized.
c
if (iz1.gt.iz2.or.nsetp.ge.m) go to 350
c
c compute components of the dual (negative gradient) vector w().
c
do 50 iz=iz1,iz2
j=index(iz)
sm=zero
do 40 l=npp1,m
40 sm=sm+a(l,j)*b(l)
50 w(j)=sm
c find largest positive w(j).
60 wmax=zero
do 70 iz=iz1,iz2
j=index(iz)
if (w(j).le.wmax) go to 70
wmax=w(j)
izmax=iz
70 continue
c
c if wmax .le. 0. go to termination.
c this indicates satisfaction of the kuhn-tucker conditions.
c
if (wmax) 350,350,80
80 iz=izmax
j=index(iz)
c
c the sign of w(j) is ok for j to be moved to set p.
c begin the transformation and check new diagonal element to avoid
c near linear dependence.
c
asave=a(npp1,j)
call h12 (1,npp1,npp1+1,m,a(1,j),1,up,dummy,1,1,0)
unorm=zero
if (nsetp.eq.0) go to 100
do 90 l=1,nsetp
90 unorm=unorm+a(l,j)**2
100 unorm=sqrt(unorm)
if (diff(unorm+abs(a(npp1,j))*factor,unorm)) 130,130,110
c
c col j is sufficiently independent. copy b into zz, update zz and
c > solve for ztest ( = proposed new value for x(j) ).
c
110 do 120 l=1,m
120 zz(l)=b(l)
call h12 (2,npp1,npp1+1,m,a(1,j),1,up,zz,1,1,1)
ztest=zz(npp1)/a(npp1,j)
c
c see if ztest is positive
c reject j as a candidate to be moved from set z to set p.
c restore a(npp1,j), set w(j)=0., and loop back to test dual
c
if (ztest) 130,130,140
c
c coeffs again.
c
130 a(npp1,j)=asave
w(j)=zero
go to 60
c
c the index j=index(iz) has been selected to be moved from
c set z to set p. update b, update indices, apply householder
c transformations to cols in new set z, zero subdiagonal elts in
c col j, set w(j)=0.
c
140 do 150 l=1,m
150 b(l)=zz(l)
c
index(iz)=index(iz1)
index(iz1)=j
iz1=iz1+1
nsetp=npp1
npp1=npp1+1
c
if (iz1.gt.iz2) go to 170
do 160 jz=iz1,iz2
jj=index(jz)
160 call h12 (2,nsetp,npp1,m,a(1,j),1,up,a(1,jj),1,mda,1)
170 continue
c
if (nsetp.eq.m) go to 190
do 180 l=npp1,m
180 a(l,j)=zero
190 continue
c
w(j)=zero
c solve the triangular system.
c store the solution temporarily in zz().
assign 200 to next
go to 400
200 continue
c
c ****** secondary loop begins here ******
c
c iteration counter.
c
210 iter=iter+1
if (iter.le.itmax) go to 220
mode=3
write (6,440)
go to 350
220 continue
c
c see if all new constrained coeffs are feasible.
c if not compute alpha.
c
alpha=two
do 240 ip=1,nsetp
l=index(ip)
if (zz(ip)) 230,230,240
c
230 t=-x(l)/(zz(ip)-x(l))
if (alpha.le.t) go to 240
alpha=t
jj=ip
240 continue
c
c if all new constrained coeffs are feasible then alpha will
c still = 2. if so exit from secondary loop to main loop.
c
if (alpha.eq.two) go to 330
c
c otherwise use alpha which will be between 0. and 1. to
c interpolate between the old x and the new zz.
c
do 250 ip=1,nsetp
l=index(ip)
250 x(l)=x(l)+alpha*(zz(ip)-x(l))
c
c modify a and b and the index arrays to move coefficient i
c from set p to set z.
c
i=index(jj)
260 x(i)=zero
c
if (jj.eq.nsetp) go to 290
jj=jj+1
do 280 j=jj,nsetp
ii=index(j)
index(j-1)=ii
call g1 (a(j-1,ii),a(j,ii),cc,ss,a(j-1,ii))
a(j,ii)=zero
do 270 l=1,n
if (l.ne.ii) call g2 (cc,ss,a(j-1,l),a(j,l))
270 continue
280 call g2 (cc,ss,b(j-1),b(j))
290 npp1=nsetp
nsetp=nsetp-1
iz1=iz1-1
index(iz1)=i
c
c see if the remaining coeffs in set p are feasible. they should
c be because of the way alpha was determined.
c if any are infeasible it is due to round-off error. any
c that are nonpositive will be set to zero
c and moved from set p to set z.
c
do 300 jj=1,nsetp
i=index(jj)
if (x(i)) 260,260,300
300 continue
c
c copy b( ) into zz( ). then solve again and loop back.
c
do 310 i=1,m
310 zz(i)=b(i)
assign 320 to next
go to 400
320 continue
go to 210
c ****** end of secondary loop ******
c
330 do 340 ip=1,nsetp
i=index(ip)
340 x(i)=zz(ip)
c all new coeffs are positive. loop back to beginning.
go to 30
c
c ****** end of main loop ******
c
c come to here for termination.
c compute the norm of the final residual vector.
c
350 sm=zero
if (npp1.gt.m) go to 370
do 360 i=npp1,m
360 sm=sm+b(i)**2
go to 390
370 do 380 j=1,n
380 w(j)=zero
390 rnorm=sqrt(sm)
return
c
c the following block of code is used as an internal subroutine
c to solve the triangular system, putting the solution in zz().
c
400 do 430 l=1,nsetp
ip=nsetp+1-l
if (l.eq.1) go to 420
do 410 ii=1,ip
410 zz(ii)=zz(ii)-a(ii,jj)*zz(ip+1)
420 jj=index(ip)
430 zz(ip)=zz(ip)/a(ip,jj)
go to next, (200,320)
440 format (35h0 nnls quitting on iteration count.)
end
|