1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
|
subroutine sva (a,mda,m,n,mdata,b,sing,names,iscale,d)
c c.l.lawson and r.j.hanson, jet propulsion laboratory, 1973 jun 12
c to appear in 'solving least squares problems', prentice-hall, 1974
c singular value analysis printout
c
c iscale set by user to 1, 2, or 3 to select column scaling
c option.
c 1 subr will use identity scaling and ignore the d()
c array.
c 2 subr will scale nonzero cols to have unit euclide
c length and will store reciprocal lengths of
c original nonzero cols in d().
c 3 user supplies col scale factors in d(). subr
c will mult col j by d(j) and remove the scaling
c from the soln at the end.
c
dimension a(mda,n), b(m), sing(01),d(n)
c sing(3*n)
dimension names(n)
logical test
double precision sb, dzero
dzero=0.d0
one=1.
zero=0.
if (m.le.0 .or. n.le.0) return
np1=n+1
write (6,270)
write (6,260) m,n,mdata
go to (60,10,10), iscale
c
c apply column scaling to a
c
10 do 50 j=1,n
a1=d(j)
go to (20,20,40), iscale
20 sb=dzero
do 30 i=1,m
30 sb=sb+dble(a(i,j))**2
a1=dsqrt(sb)
if (a1.eq.zero) a1=one
a1=one/a1
d(j)=a1
40 do 50 i=1,m
50 a(i,j)=a(i,j)*a1
write (6,280) iscale,(d(j),j=1,n)
go to 70
60 continue
write (6,290)
70 continue
c
c obtain sing. value decomp. of scaled matrix.
c
c**********************************************************
call svdrs (a,mda,m,n,b,1,1,sing)
c**********************************************************
c
c print the v matrix.
c
call mfeout (a,mda,n,n,names,1)
if (iscale.eq.1) go to 90
c
c replace v by d*v in the array a()
c
do 80 i=1,n
do 80 j=1,n
80 a(i,j)=d(i)*a(i,j)
c
c g now in b array. v now in a array.
c
c
c obtain summary output.
c
90 continue
write (6,220)
c
c compute cumulative sums of squares of components of
c g and store them in sing(i), i=minmn+1,...,2*minmn+1
c
sb=dzero
minmn=min0(m,n)
minmn1=minmn+1
if (m.eq.minmn) go to 110
do 100 i=minmn1,m
100 sb=sb+dble(b(i))**2
110 sing(2*minmn+1)=sb
do 120 jj=1,minmn
j=minmn+1-jj
sb=sb+dble(b(j))**2
js=minmn+j
120 sing(js)=sb
a3=sing(minmn+1)
a4=sqrt(a3/float(max0(1,mdata)))
write (6,230) a3,a4
c
nsol=0
c
c
c
do 160 k=1,minmn
if (sing(k).eq.zero) go to 130
nsol=k
pi=b(k)/sing(k)
a1=one/sing(k)
a2=b(k)**2
a3=sing(minmn1+k)
a4=sqrt(a3/float(max0(1,mdata-k)))
test=sing(k).ge.100..or.sing(k).lt..001
if (test) write (6,240) k,sing(k),pi,a1,b(k),a2,a3,a4
if (.not.test) write (6,250) k,sing(k),pi,a1,b(k),a2,a3,a4
go to 140
130 write (6,240) k,sing(k)
pi=zero
140 do 150 i=1,n
a(i,k)=a(i,k)*pi
150 if (k.gt.1) a(i,k)=a(i,k)+a(i,k-1)
160 continue
c
c compute and print values of ynorm and rnorm.
c
write (6,300)
j=0
ysq=zero
go to 180
170 j=j+1
ysq=ysq+(b(j)/sing(j))**2
180 ynorm=sqrt(ysq)
js=minmn1+j
rnorm=sqrt(sing(js))
yl=-1000.
if (ynorm.gt.0.) yl=alog10(ynorm)
rl=-1000.
if (rnorm.gt.0.) rl=alog10(rnorm)
write (6,310) j,ynorm,rnorm,yl,rl
if (j.lt.nsol) go to 170
c
c compute values of xnorm and rnorm for a sequence of values of
c the levenberg-marquardt parameter.
c
if (sing(1).eq.zero) go to 210
el=alog10(sing(1))+one
el2=alog10(sing(nsol))-one
del=(el2-el)/20.
ten=10.
aln10=alog(ten)
write (6,320)
do 200 ie=1,21
c compute alamb=10.**el
alamb=exp(aln10*el)
ys=0.
js=minmn1+nsol
rs=sing(js)
do 190 i=1,minmn
sl=sing(i)**2+alamb**2
ys=ys+(b(i)*sing(i)/sl)**2
rs=rs+(b(i)*(alamb**2)/sl)**2
190 continue
ynorm=sqrt(ys)
rnorm=sqrt(rs)
rl=-1000.
if (rnorm.gt.zero) rl=alog10(rnorm)
yl=-1000.
if (ynorm.gt.zero) yl=alog10(ynorm)
write (6,330) alamb,ynorm,rnorm,el,yl,rl
el=el+del
200 continue
c
c print candidate solutions.
c
210 if (nsol.ge.1) call mfeout (a,mda,n,nsol,names,2)
return
220 format (42h0 index sing. value p coef ,48hrecip. s.
1v. g coef g**2 ,39h c.s.s.
2 n.s.r.c.s.s.)
230 format (1h ,5x,1h0,88x,1pe15.4,1pe17.4)
240 format (1h ,i6,e12.4,1p(e15.4,4x,e15.4,4x,e15.4,4x,e15.4,4x,e15.4,
12x,e15.4))
250 format (1h ,i6,f12.4,1p(e15.4,4x,e15.4,4x,e15.4,4x,e15.4,4x,e15.4,
12x,e15.4))
260 format (5h0m = ,i6,8h, n = ,i4,12h, mdata = ,i8)
270 format (45h0singular value analysis of the least squares,42h probl
1em, a*x=b, scaled as (a*d)*y=b .)
280 format (19h0scaling option no.,i2,18h. d is a diagonal,46h matrix
1 with the following diagonal elements../(5x,10e12.4))
290 format (50h0scaling option no. 1. d is the identity matrix./1x)
300 format (6h0index,13x,28h ynorm rnorm,14x,28h log1
10(ynorm) log10(rnorm)/1x)
310 format (1h ,i4,14x,2e14.5,14x,2f14.5)
320 format (54h0norms of solution and residual vectors for a range of,
144h values of the levenberg-marquardt parameter,9h, lambda./1h0,4x
2,42h lambda ynorm rnorm,42h log10(lambda)
3log10(ynorm) log10(rnorm))
330 format (5x,3e14.5,3f14.5)
end
|