aboutsummaryrefslogtreecommitdiff
path: root/math/slalib/svd.f
blob: 59f53cfd2d9f293affd4ffb94b0f92596f578ade (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
SUBROUTINE slSVD (M, N, MP, NP, A, W, V, WORK, JSTAT)
*+
*     - - - -
*      S V D
*     - - - -
*
*  Singular value decomposition  (double precision)
*
*  This routine expresses a given matrix A as the product of
*  three matrices U, W, V:
*
*     A = U x W x VT
*
*  Where:
*
*     A   is any M (rows) x N (columns) matrix, where M.GE.N
*     U   is an M x N column-orthogonal matrix
*     W   is an N x N diagonal matrix with W(I,I).GE.0
*     VT  is the transpose of an N x N orthogonal matrix
*
*     Note that M and N, above, are the LOGICAL dimensions of the
*     matrices and vectors concerned, which can be located in
*     arrays of larger PHYSICAL dimensions, given by MP and NP.
*
*  Given:
*     M,N    i         numbers of rows and columns in matrix A
*     MP,NP  i         physical dimensions of array containing matrix A
*     A      d(MP,NP)  array containing MxN matrix A
*
*  Returned:
*     A      d(MP,NP)  array containing MxN column-orthogonal matrix U
*     W      d(N)      NxN diagonal matrix W (diagonal elements only)
*     V      d(NP,NP)  array containing NxN orthogonal matrix V
*     WORK   d(N)      workspace
*     JSTAT  i         0 = OK, -1 = A wrong shape, >0 = index of W
*                      for which convergence failed.  See note 2, below.
*
*   Notes:
*
*   1)  V contains matrix V, not the transpose of matrix V.
*
*   2)  If the status JSTAT is greater than zero, this need not
*       necessarily be treated as a failure.  It means that, due to
*       chance properties of the matrix A, the QR transformation
*       phase of the routine did not fully converge in a predefined
*       number of iterations, something that very seldom occurs.
*       When this condition does arise, it is possible that the
*       elements of the diagonal matrix W have not been correctly
*       found.  However, in practice the results are likely to
*       be trustworthy.  Applications should report the condition
*       as a warning, but then proceed normally.
*
*  References:
*     The algorithm is an adaptation of the routine SVD in the EISPACK
*     library (Garbow et al 1977, EISPACK Guide Extension, Springer
*     Verlag), which is a FORTRAN 66 implementation of the Algol
*     routine SVD of Wilkinson & Reinsch 1971 (Handbook for Automatic
*     Computation, vol 2, ed Bauer et al, Springer Verlag).  These
*     references give full details of the algorithm used here.  A good
*     account of the use of SVD in least squares problems is given in
*     Numerical Recipes (Press et al 1986, Cambridge University Press),
*     which includes another variant of the EISPACK code.
*
*  Last revision:   8 September 2005
*
*  Copyright P.T.Wallace.  All rights reserved.
*
*  License:
*    This program is free software; you can redistribute it and/or modify
*    it under the terms of the GNU General Public License as published by
*    the Free Software Foundation; either version 2 of the License, or
*    (at your option) any later version.
*
*    This program is distributed in the hope that it will be useful,
*    but WITHOUT ANY WARRANTY; without even the implied warranty of
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
*    GNU General Public License for more details.
*
*    You should have received a copy of the GNU General Public License
*    along with this program (see SLA_CONDITIONS); if not, write to the
*    Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
*    Boston, MA  02110-1301  USA
*
*  Copyright (C) 1995 Association of Universities for Research in Astronomy Inc.
*-

      IMPLICIT NONE

      INTEGER M,N,MP,NP
      DOUBLE PRECISION A(MP,NP),W(N),V(NP,NP),WORK(N)
      INTEGER JSTAT

*  Maximum number of iterations in QR phase
      INTEGER ITMAX
      PARAMETER (ITMAX=30)

      INTEGER L,L1,I,K,J,K1,ITS,I1
      LOGICAL CANCEL
      DOUBLE PRECISION G,SCALE,AN,S,X,F,H,C,Y,Z



*  Variable initializations to avoid compiler warnings.
      L = 0
      L1 = 0

*  Check that the matrix is the right shape
      IF (M.LT.N) THEN

*     No:  error status
         JSTAT = -1

      ELSE

*     Yes:  preset the status to OK
         JSTAT = 0

*
*     Householder reduction to bidiagonal form
*     ----------------------------------------

         G = 0D0
         SCALE = 0D0
         AN = 0D0
         DO I=1,N
            L = I+1
            WORK(I) = SCALE*G
            G = 0D0
            S = 0D0
            SCALE = 0D0
            IF (I.LE.M) THEN
               DO K=I,M
                  SCALE = SCALE+ABS(A(K,I))
               END DO
               IF (SCALE.NE.0D0) THEN
                  DO K=I,M
                     X = A(K,I)/SCALE
                     A(K,I) = X
                     S = S+X*X
                  END DO
                  F = A(I,I)
                  G = -SIGN(SQRT(S),F)
                  H = F*G-S
                  A(I,I) = F-G
                  IF (I.NE.N) THEN
                     DO J=L,N
                        S = 0D0
                        DO K=I,M
                           S = S+A(K,I)*A(K,J)
                        END DO
                        F = S/H
                        DO K=I,M
                           A(K,J) = A(K,J)+F*A(K,I)
                        END DO
                     END DO
                  END IF
                  DO K=I,M
                     A(K,I) = SCALE*A(K,I)
                  END DO
               END IF
            END IF
            W(I) = SCALE*G
            G = 0D0
            S = 0D0
            SCALE = 0D0
            IF (I.LE.M .AND. I.NE.N) THEN
               DO K=L,N
                  SCALE = SCALE+ABS(A(I,K))
               END DO
               IF (SCALE.NE.0D0) THEN
                  DO K=L,N
                     X = A(I,K)/SCALE
                     A(I,K) = X
                     S = S+X*X
                  END DO
                  F = A(I,L)
                  G = -SIGN(SQRT(S),F)
                  H = F*G-S
                  A(I,L) = F-G
                  DO K=L,N
                     WORK(K) = A(I,K)/H
                  END DO
                  IF (I.NE.M) THEN
                     DO J=L,M
                        S = 0D0
                        DO K=L,N
                           S = S+A(J,K)*A(I,K)
                        END DO
                        DO K=L,N
                           A(J,K) = A(J,K)+S*WORK(K)
                        END DO
                     END DO
                  END IF
                  DO K=L,N
                     A(I,K) = SCALE*A(I,K)
                  END DO
               END IF
            END IF

*        Overestimate of largest column norm for convergence test
            AN = MAX(AN,ABS(W(I))+ABS(WORK(I)))

         END DO

*
*     Accumulation of right-hand transformations
*     ------------------------------------------

         DO I=N,1,-1
            IF (I.NE.N) THEN
               IF (G.NE.0D0) THEN
                  DO J=L,N
                     V(J,I) = (A(I,J)/A(I,L))/G
                  END DO
                  DO J=L,N
                     S = 0D0
                     DO K=L,N
                        S = S+A(I,K)*V(K,J)
                     END DO
                     DO K=L,N
                        V(K,J) = V(K,J)+S*V(K,I)
                     END DO
                  END DO
               END IF
               DO J=L,N
                  V(I,J) = 0D0
                  V(J,I) = 0D0
               END DO
            END IF
            V(I,I) = 1D0
            G = WORK(I)
            L = I
         END DO

*
*     Accumulation of left-hand transformations
*     -----------------------------------------

         DO I=N,1,-1
            L = I+1
            G = W(I)
            IF (I.NE.N) THEN
               DO J=L,N
                  A(I,J) = 0D0
               END DO
            END IF
            IF (G.NE.0D0) THEN
               IF (I.NE.N) THEN
                  DO J=L,N
                     S = 0D0
                     DO K=L,M
                        S = S+A(K,I)*A(K,J)
                     END DO
                     F = (S/A(I,I))/G
                     DO K=I,M
                        A(K,J) = A(K,J)+F*A(K,I)
                     END DO
                  END DO
               END IF
               DO J=I,M
                  A(J,I) = A(J,I)/G
               END DO
            ELSE
               DO J=I,M
                  A(J,I) = 0D0
               END DO
            END IF
            A(I,I) = A(I,I)+1D0
         END DO

*
*     Diagonalisation of the bidiagonal form
*     --------------------------------------

         DO K=N,1,-1
            K1 = K-1

*        Iterate until converged
            ITS = 0
            DO WHILE (ITS.LT.ITMAX)
               ITS = ITS+1

*           Test for splitting into submatrices
               CANCEL = .TRUE.
               DO L=K,1,-1
                  L1 = L-1
                  IF (AN+ABS(WORK(L)).EQ.AN) THEN
                     CANCEL = .FALSE.
                     GO TO 10
                  END IF
*              (Following never attempted for L=1 because WORK(1) is zero)
                  IF (AN+ABS(W(L1)).EQ.AN) GO TO 10
               END DO
 10            CONTINUE

*           Cancellation of WORK(L) if L>1
               IF (CANCEL) THEN
                  C = 0D0
                  S = 1D0
                  DO I=L,K
                     F = S*WORK(I)
                     IF (AN+ABS(F).EQ.AN) GO TO 20
                     G = W(I)
                     H = SQRT(F*F+G*G)
                     W(I) = H
                     C = G/H
                     S = -F/H
                     DO J=1,M
                        Y = A(J,L1)
                        Z = A(J,I)
                        A(J,L1) = Y*C+Z*S
                        A(J,I) = -Y*S+Z*C
                     END DO
                  END DO
 20               CONTINUE
               END IF

*           Converged?
               Z = W(K)
               IF (L.EQ.K) THEN

*              Yes:  stop iterating
                  ITS = ITMAX

*              Ensure singular values non-negative
                  IF (Z.LT.0D0) THEN
                     W(K) = -Z
                     DO J=1,N
                        V(J,K) = -V(J,K)
                     END DO
                  END IF
               ELSE

*              Not converged yet:  set status if iteration limit reached
                  IF (ITS.EQ.ITMAX) JSTAT = K

*              Shift from bottom 2x2 minor
                  X = W(L)
                  Y = W(K1)
                  G = WORK(K1)
                  H = WORK(K)
                  F = ((Y-Z)*(Y+Z)+(G-H)*(G+H))/(2D0*H*Y)
                  IF (ABS(F).LE.1D15) THEN
                     G = SQRT(F*F+1D0)
                  ELSE
                     G = ABS(F)
                  END IF
                  F = ((X-Z)*(X+Z)+H*(Y/(F+SIGN(G,F))-H))/X

*              Next QR transformation
                  C = 1D0
                  S = 1D0
                  DO I1=L,K1
                     I = I1+1
                     G = WORK(I)
                     Y = W(I)
                     H = S*G
                     G = C*G
                     Z = SQRT(F*F+H*H)
                     WORK(I1) = Z
                     IF (Z.NE.0D0) THEN
                        C = F/Z
                        S = H/Z
                     ELSE
                        C = 1D0
                        S = 0D0
                     END IF
                     F = X*C+G*S
                     G = -X*S+G*C
                     H = Y*S
                     Y = Y*C
                     DO J=1,N
                        X = V(J,I1)
                        Z = V(J,I)
                        V(J,I1) = X*C+Z*S
                        V(J,I) = -X*S+Z*C
                     END DO
                     Z = SQRT(F*F+H*H)
                     W(I1) = Z
                     IF (Z.NE.0D0) THEN
                        C = F/Z
                        S = H/Z
                     END IF
                     F = C*G+S*Y
                     X = -S*G+C*Y
                     DO J=1,M
                        Y = A(J,I1)
                        Z = A(J,I)
                        A(J,I1) = Y*C+Z*S
                        A(J,I) = -Y*S+Z*C
                     END DO
                  END DO
                  WORK(L) = 0D0
                  WORK(K) = F
                  W(K) = X
               END IF
            END DO
         END DO
      END IF

      END