aboutsummaryrefslogtreecommitdiff
path: root/math/surfit/sf_feval.x
blob: 58b2f7655667b2e618f0bcbdf4194311c53fad80 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# Copyright(c) 1986 Association of Universities for Research in Astronomy Inc.

# SF_EVCHEB -- Procedure to evaluate a Chebyshev polynomial assuming that
# the coefficients have been calculated. 

procedure sf_evcheb (coeff, x, y, zfit, npts, xterms, xorder, yorder, k1x, k2x,
	k1y, k2y)

real	coeff[ARB]		# 1D array of coefficients
real	x[npts]			# x values of points to be evaluated
real	y[npts]
real	zfit[npts]		# the fitted points
int	npts			# number of points to be evaluated
int	xterms			# cross terms ?
int	xorder,yorder		# order of the polynomials in x and y
real	k1x, k2x		# normalizing constants
real	k1y, k2y

int	i, k, j
int	ytorder, cptr
pointer	sp
pointer	xb, yb, accum
pointer ybzptr, ybptr, xbzptr

begin
	# fit a constant
	if (xorder == 1 && yorder == 1) {
	    call amovkr (coeff[1], zfit, npts)
	    return
	}

	# allocate temporary space for the basis functions
	call smark (sp)
	call salloc (xb, xorder * npts, TY_REAL)
	call salloc (yb, yorder * npts, TY_REAL)
	call salloc (accum, npts, TY_REAL)

	# calculate basis functions
	call sf_bcheb (x, npts, xorder, k1x, k2x, Memr[xb])
	call sf_bcheb (y, npts, yorder, k1y, k2y, Memr[yb])

	# clear the accumulator
	call aclrr (zfit, npts)

	# accumulate the values
	cptr = 0
	ybzptr = yb - 1
	xbzptr = xb - 1
	ytorder = yorder

	do i = 1, xorder {
	    call aclrr (Memr[accum], npts)
	    ybptr = ybzptr
	    do k = 1, ytorder {
		do j = 1, npts
		    Memr[accum+j-1] = Memr[accum+j-1] + coeff[cptr+k] *
		        Memr[ybptr+j]
		ybptr = ybptr + npts
	    }
	    do j = 1, npts
		zfit[j] = zfit[j] + Memr[accum+j-1] * Memr[xbzptr+j]

	    if (xterms == NO)
		ytorder = 1

	    cptr = cptr + yorder
	    xbzptr = xbzptr + npts
	}

	# free temporary space
	call sfree (sp)
end


# SF_EVLEG -- Procedure to evaluate a Chebyshev polynomial assuming that
# the coefficients have been calculated. 

procedure sf_evleg (coeff, x, y, zfit, npts, xterms, xorder, yorder, k1x, k2x,
	k1y, k2y)

real	coeff[ARB]		# 1D array of coefficients
real	x[npts]			# x values of points to be evaluated
real	y[npts]
real	zfit[npts]		# the fitted points
int	npts			# number of points to be evaluated
int	xterms			# cross terms ?
int	xorder,yorder		# order of the polynomials in x and y
real	k1x, k2x		# normalizing constants
real	k1y, k2y

int	i, k, j
int	ytorder, cptr
pointer	sp
pointer	xb, yb, accum
pointer ybzptr, ybptr, xbzptr

begin
	# fit a constant
	if (xorder == 1 && yorder == 1) {
	    call amovkr (coeff[1], zfit, npts)
	    return
	}

	# allocate temporary space for the basis functions
	call smark (sp)
	call salloc (xb, xorder * npts, TY_REAL)
	call salloc (yb, yorder * npts, TY_REAL)
	call salloc (accum, npts, TY_REAL)

	# calculate basis functions
	call sf_bleg (x, npts, xorder, k1x, k2x, Memr[xb])
	call sf_bleg (y, npts, yorder, k1y, k2y, Memr[yb])

	# clear the accumulator
	call aclrr (zfit, npts)

	# accumulate the values
	cptr = 0
	ybzptr = yb - 1
	xbzptr = xb - 1
	ytorder = yorder

	do i = 1, xorder {
	    call aclrr (Memr[accum], npts)
	    ybptr = ybzptr
	    do k = 1, ytorder {
		do j = 1, npts
		    Memr[accum+j-1] = Memr[accum+j-1] + coeff[cptr+k] *
		        Memr[ybptr+j]
		ybptr = ybptr + npts
	    }
	    do j = 1, npts
		zfit[j] = zfit[j] + Memr[accum+j-1] * Memr[xbzptr+j]

	    if (xterms == NO)
		ytorder = 1

	    cptr = cptr + yorder
	    xbzptr = xbzptr + npts
	}

	# free temporary space
	call sfree (sp)
end


# SF_EVSPLINE3 -- Procedure to evaluate a piecewise linear spline function
# assuming that the coefficients have been calculated.

procedure sf_evspline3 (coeff, x, y, zfit, npts, nxpieces, nypieces, k1x, k2x,
	k1y, k2y)

real	coeff[ARB]		# array of coefficients
real	x[npts]			# array of x values
real	y[npts]			# array of y values
real	zfit[npts]		# array of fitted values
int	npts			# number of data points
int	nxpieces, nypieces	# number of fitted points minus 1
real	k1x, k2x		# normalizing constants
real	k1y, k2y

int	i, j, k, cindex
pointer	xb, xbzptr, yb, ybzptr, ybptr
pointer	accum, leftx, lefty
pointer	sp

begin
	# allocate temporary space for the basis functions
	call smark (sp)
	call salloc (xb, 4 * npts, TY_REAL)
	call salloc (yb, 4 * npts, TY_REAL)
	call salloc (accum, npts, TY_REAL)
	call salloc (leftx, npts, TY_INT)
	call salloc (lefty, npts, TY_INT)

	# calculate basis functions
	call sf_bspline3 (x, npts, nxpieces, k1x, k2x, Memr[xb], Memi[leftx])
	call sf_bspline3 (y, npts, nypieces, k1y, k2y, Memr[yb], Memi[lefty])

	# set up the indexing
	call amulki (Memi[leftx], (nypieces+4), Memi[leftx], npts)
	call aaddi (Memi[leftx], Memi[lefty], Memi[lefty], npts)

	# clear the accumulator
	call aclrr (zfit, npts)

	# accumulate the values

	ybzptr = yb - 1
	xbzptr = xb - 1

	do i = 1, 4 {
	    call aclrr (Memr[accum], npts)
	    ybptr = ybzptr
	    do k = 1, 4 {
		do j = 1, npts {
		    cindex = k + Memi[lefty+j-1]
		    Memr[accum+j-1] = Memr[accum+j-1] + coeff[cindex] *
		        Memr[ybptr+j]
		}
		ybptr = ybptr + npts
	    }
	    do j = 1, npts
		zfit[j] = zfit[j] + Memr[accum+j-1] * Memr[xbzptr+j]

	    xbzptr = xbzptr + npts
	    call aaddki (Memi[lefty], (nypieces+4), Memi[lefty], npts)
	}

	# free temporary space
	call sfree (sp)
end


# SF_EVSPLINE1 -- Procedure to evaluate a piecewise linear spline function
# assuming that the coefficients have been calculated.

procedure sf_evspline1 (coeff, x, y, zfit, npts, nxpieces, nypieces, k1x, k2x,
	k1y, k2y)

real	coeff[ARB]		# array of coefficients
real	x[npts]			# array of x values
real	y[npts]			# array of y values
real	zfit[npts]		# array of fitted values
int	npts			# number of data points
int	nxpieces, nypieces	# number of fitted points minus 1
real	k1x, k2x		# normalizing constants
real	k1y, k2y

int	i, j, k, cindex
pointer	xb, xbzptr, yb, ybzptr, ybptr
pointer	accum, leftx, lefty
pointer	sp

begin
	# allocate temporary space for the basis functions
	call smark (sp)
	call salloc (xb, 2 * npts, TY_REAL)
	call salloc (yb, 2 * npts, TY_REAL)
	call salloc (accum, npts, TY_REAL)
	call salloc (leftx, npts, TY_INT)
	call salloc (lefty, npts, TY_INT)

	# calculate basis functions
	call sf_bspline1 (x, npts, nxpieces, k1x, k2x, Memr[xb], Memi[leftx])
	call sf_bspline1 (y, npts, nypieces, k1y, k2y, Memr[yb], Memi[lefty])

	# set up the indexing
	call amulki (Memi[leftx], (nypieces+2), Memi[leftx], npts)
	call aaddi (Memi[leftx], Memi[lefty], Memi[lefty], npts)

	# clear the accumulator
	call aclrr (zfit, npts)

	# accumulate the values

	ybzptr = yb - 1
	xbzptr = xb - 1

	do i = 1, 2 {
	    call aclrr (Memr[accum], npts)
	    ybptr = ybzptr
	    do k = 1, 2 {
		do j = 1, npts {
		    cindex = k + Memi[lefty+j-1]
		    Memr[accum+j-1] = Memr[accum+j-1] + coeff[cindex] *
		        Memr[ybptr+j]
		}
		ybptr = ybptr + npts
	    }
	    do j = 1, npts
		zfit[j] = zfit[j] + Memr[accum+j-1] * Memr[xbzptr+j]

	    xbzptr = xbzptr + npts
	    call aaddki (Memi[lefty], (nypieces+2), Memi[lefty], npts)
	}

	# free temporary space
	call sfree (sp)
end