aboutsummaryrefslogtreecommitdiff
path: root/noao/artdata/lists/stlum.x
blob: 0abe9e1e2b01fb1f2b45bf6cf8e1b0fe3471572e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
include <mach.h>
include <math.h>
include <math/curfit.h>
include <math/iminterp.h>


# ST_MAGUNIFORM -- Compute a set of magnitude values which are uniformly
# distributed between minmag and maxmag.

procedure st_maguniform (mag, nstars, minmag, maxmag, seed)

real	mag[ARB]	# output array of magnitudes
int	nstars		# number of stars
real	minmag, maxmag	# minimum and maximum magnitude values
long	seed		# seed for random number generator

int	i
real	urand()

begin
	# Get values between 0 and 1.
	do i = 1, nstars
	    mag[i] = urand (seed)

	# Map values into data range.
	call amapr (mag, mag, nstars, 0.0, 1.0, minmag, maxmag)
end


# ST_POWER -- Compute a set of magnitude values which are power law
# distributed between minmag and maxmag.

procedure st_power (mag, nstars, power, minmag, maxmag, seed)

real	mag[ARB]	# output array of magnitudes
int	nstars		# number of stars
real	power		# power law exponent
real	minmag, maxmag	# minimum and maximum magnitude values
long	seed		# seed for random number generator

int	i
real	a, urand()

begin
	# Get values between 0 and 1.
	a = 10. ** (power * (maxmag - minmag)) - 1
	do i = 1, nstars
	    mag[i] = minmag + log10 (a * urand (seed) + 1) / power
end


define	MIN_BANDS	-6.
define	MAX_BANDS	19.
define	MID_BANDS	15.

# ST_BANDS -- Compute the Bahcall and Soneira luminosity function.

procedure st_bands (mag, nstars, alpha, beta, delta, mstar, minmag, maxmag,
	mzero, nsample, order, seed)

real	mag[ARB]		# array of output magnitudes
int	nstars			# number of stars
real	alpha, beta		# Bahcall and Soneira parameters
real	delta, mstar		# Bahcall and Soneira parameters
real	minmag, maxmag		# minimum and maximum magnitude values
real	mzero			# zero point between relative and absolute mags.
int	nsample			# number of points in sampling function
int	order			# order of the spline fit
long	seed			# value of the seed

int	i, ier
pointer	sp, m, iprob, w, cv, asi
real	dmag, magval, mtemp, temp1, temp2, imin, imax
real	cveval(), asigrl(), urand()

begin
	# Allocate temporary space.
	call smark (sp)
	call salloc (m, nsample, TY_REAL)
	call salloc (iprob, nsample, TY_REAL)
	call salloc (w, nsample, TY_REAL)

	# Compute the probability function.
	magval = max (minmag - mzero, MIN_BANDS)
	dmag = (min (maxmag - mzero, MAX_BANDS) - magval) / (nsample - 1)
	do i = 1, nsample {
	    Memr[m+i-1] = magval
	    if (magval > MID_BANDS)
		mtemp = MID_BANDS
	    else
	        mtemp = magval - mstar
	    temp1 = 10.0 ** (beta * mtemp)
	    temp2 = (1.0 + 10.0 ** ((beta - alpha) * delta * mtemp)) **
	            (1.0 / delta)
	    Memr[iprob+i-1] = temp1 / temp2
	    magval = magval + dmag
	}

	# Integrate the probablity function.
	call asiinit (asi, II_SPLINE3)
	call asifit (asi, Memr[iprob], nsample)
	Memr[iprob] = 0.0
	do i = 2, nsample
	    Memr[iprob+i-1] = Memr[iprob+i-2] + asigrl (asi, real (i-1),
	        real (i))
	call alimr (Memr[iprob], nsample, imin, imax)
	call amapr (Memr[iprob], Memr[iprob], nsample, imin, imax, 0.0, 1.0)
	call asifree (asi)

	# Fit the inverse of the integral of the probability function.
	call cvinit (cv, SPLINE3, order, 0.0, 1.0)
	call cvfit (cv, Memr[iprob], Memr[m], Memr[w], nsample, WTS_UNIFORM,
	    ier)

	# Compute the magnitudes.
	if (ier == OK) {
	    do i = 1, nstars
	        mag[i] = cveval (cv, urand (seed)) + mzero
	} else {
	    call printf ("Error computing the bands luminosity function.\n")
	    call amovkr ((minmag + maxmag) / 2.0, mag, nstars)
	}
	call cvfree (cv)

	# Free space.
	call sfree (sp)
end


define	MIN_SALPETER	-4.0
define	MAX_SALPETER	16.0

# ST_SALPETER  -- Compute the Salpter luminosity function.

procedure st_salpeter (mag, nstars, minmag, maxmag, mzero, nsample, order, seed)

real	mag[ARB]		# array of output magnitudes
int	nstars			# number of stars
real	minmag, maxmag		# minimum and maximum magnitude values
real	mzero			# zero point between relative and absolute mags.
int	nsample			# number of points in sampling function
int	order			# order of the spline fit
long	seed			# value of the seed

int	i, ier
pointer	sp, m, iprob, w, cv, asi
real	dmag, magval, imin, imax
real	cveval(), asigrl(), urand()

begin
	# Allocate temporary space.
	call smark (sp)
	call salloc (m, nsample, TY_REAL)
	call salloc (iprob, nsample, TY_REAL)
	call salloc (w, nsample, TY_REAL)

	# Compute the probability function.
	magval = max (minmag - mzero, MIN_SALPETER)
	dmag = (min (maxmag - mzero, MAX_SALPETER) - magval) / (nsample - 1)
	do i = 1, nsample {
	    Memr[m+i-1] = magval
	    Memr[iprob+i-1] = 10.0 ** (-3.158375 + 1.550629e-1 * magval -
	        5.19388e-3 * magval ** 2)
	    magval = magval + dmag
	}

	# Integrate the probablity function.
	call asiinit (asi, II_SPLINE3)
	call asifit (asi, Memr[iprob], nsample)
	Memr[iprob] = 0.0
	do i = 2, nsample
	    Memr[iprob+i-1] = Memr[iprob+i-2] + asigrl (asi, real (i-1),
	        real (i))
	call alimr (Memr[iprob], nsample, imin, imax)
	call amapr (Memr[iprob], Memr[iprob], nsample, imin, imax, 0.0, 1.0)
	call asifree (asi)

	# Fit the inverse of the integral of the probability function.
	call cvinit (cv, SPLINE3, order, 0.0, 1.0)
	call cvfit (cv, Memr[iprob], Memr[m], Memr[w], nsample, WTS_UNIFORM,
	    ier)

	# Compute the magnitudes.
	if (ier == OK) {
	    do i = 1, nstars
	        mag[i] = cveval (cv, urand (seed)) + mzero
	} else {
	    call printf ("Error computing the Salpeter luminosity function.\n")
	    call amovkr ((minmag + maxmag) / 2.0, mag, nstars)
	}
	call cvfree (cv)

	# Free space.
	call sfree (sp)
end


# ST_SCHECTER -- Compute the Schecter luminosity function.

procedure st_schecter (mag, nstars, alpha, mstar, minmag, maxmag, mzero,
	nsample, order, seed)

real	mag[ARB]		# array of output magnitudes
int	nstars			# number of stars
real	alpha, mstar		# Schecter luminosity function parameters
real	minmag, maxmag		# minimum and maximum magnitude values
real	mzero			# zero point between relative and absolute mags.
int	nsample			# number of points in the sampling function
int	order			# order of the spline fit
long	seed			# value of the seed

int	i, ier
pointer	sp, m, iprob, w, cv, asi
real	dmag, magval, temp, imin, imax
real	cveval(), asigrl(), urand()

begin
	# Allocate space for fitting.
	call smark (sp)
	call salloc (m, nsample, TY_REAL)
	call salloc (iprob, nsample, TY_REAL)
	call salloc (w, nsample, TY_REAL)

	# Sample the luminosity function.
	magval = minmag - mzero
	dmag = (maxmag - minmag) / (nsample - 1)
	do i = 1, nsample {
	    Memr[m+i-1] = magval
	    temp = 0.4 * (mstar - magval)
	    Memr[iprob+i-1] = 10.0 ** ((alpha + 1) * temp) *
	        exp (- 10.0 ** temp)
	    magval = magval + dmag
	}

	# Integrate the sampling function.
	call asiinit (asi, II_SPLINE3)
	call asifit (asi, Memr[iprob], nsample)
	Memr[iprob] = 0.0
	do i = 2, nsample
	    Memr[iprob+i-1] = Memr[iprob+i-2] + asigrl (asi, real (i-1),
	        real(i))
	call alimr (Memr[iprob],nsample, imin, imax)
	call amapr (Memr[iprob], Memr[iprob], nsample, imin, imax, 0.0, 1.0)
	call asifree (asi)

	# Fit the inverse of the integral of the probability function.
	call cvinit (cv, SPLINE3, order, 0.0, 1.0)
	call cvfit (cv, Memr[iprob], Memr[m], Memr[w], nsample, WTS_UNIFORM,
	    ier)
	if (ier == OK) {
	    do i = 1, nstars
	        mag[i] = cveval (cv, urand (seed)) + mzero
	} else {
	    call printf ("Error fitting the Schecter luminosity function.\n")
	    call amovkr ((minmag + maxmag) / 2.0, mag, nstars)
	}
	call cvfree (cv)

	# Free space.
	call sfree (sp)
end


# ST_LFSAMPLE -- Compute the luminosity function using a user supplied
# function.

procedure st_lfsample (smag, mprob, nlf, mag, nstars, minmag, maxmag, nsample,
	order, seed)

real	smag[ARB]		# input array of magnitudes
real	mprob[ARB]		# input array of relative probabilities
int	nlf			# number of input points
real	mag[ARB]		# output magnitude array
int	nstars			# number of stars
real	minmag, maxmag		# minimum and maximum magnitude values
int	nsample			# number of sample points
int	order			# order of the spline fit
long	seed			# value of the seed

int	npts, i, ier
pointer	sp, m, w, iprob, cv, asi
real	mval, dm, sfmin, sfmax, imin, imax
real	cveval(), asigrl(), urand()

begin
	# Allocate space for fitting.
	npts = max (nlf, nsample)
	call smark (sp)
	call salloc (m, nsample, TY_REAL)
	call salloc (iprob, nsample, TY_REAL)
	call salloc (w, npts, TY_REAL)

	# Smooth the relative probability function.
	call alimr (smag, nlf, sfmin, sfmax)
	call cvinit (cv, SPLINE3, max (1, nlf / 4), sfmin, sfmax)
	call cvfit (cv, smag, mprob, Memr[w], nlf, WTS_UNIFORM, ier) 

	# Evaluate the smoothed function at equal intervals in r.
	if (ier == OK) {
	    mval = max (minmag, sfmin)
	    dm = (min (maxmag, sfmax) - mval) / (nsample - 1)
	    do i = 1, nsample {
		Memr[m+i-1] = mval
	        Memr[iprob+i-1] = cveval (cv, mval)
	        mval = mval + dm
	    }
	    call cvfree (cv)
	} else {
	    call printf ("Error smoothing user luminosity function.\n")
	    call amovkr ((minmag + maxmag) / 2.0, mag, nstars)
	    call cvfree (cv)
	    call sfree (sp)
	}

	# Evaluate the integral.
	call asiinit (asi, II_SPLINE3)
	call asifit (asi, Memr[iprob], nsample)
	Memr[iprob] = 0.0
	do i = 2, nsample
	    Memr[iprob+i-1] = Memr[iprob+i-2] + asigrl (asi, real(i-1), real(i))
	call alimr (Memr[iprob], nsample, imin, imax)
	call amapr (Memr[iprob], Memr[iprob], nsample, imin, imax, 0.0, 1.0)
	call asifree (asi)

	# Fit the inverse of the integral of the probability function.
	call cvinit (cv, SPLINE3, order, 0.0, 1.0)
	call cvfit (cv, Memr[iprob], Memr[m], Memr[w], nsample, WTS_UNIFORM,
	    ier)

	# Sample the computed function.
	if (ier == OK) {
	    do i = 1, nstars
	        mag[i] = cveval (cv, urand (seed))
	} else {
	    call printf ("Error computing the user luminosity function.\n")
	    call amovkr ((minmag + maxmag) / 2.0, mag, nstars)
	}
	call cvfree (cv)

	# Free space.
	call sfree (sp)
end