1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
|
include <math.h>
include <math/curfit.h>
include <math/iminterp.h>
# ST_XYUNIFORM -- Compute a set of x and y values uniformly distributed in x and
# y between xmin, xmax, ymin and ymax.
procedure st_xyuniform (x, y, nstars, xmin, xmax, ymin, ymax, seed)
real x[ARB] # output array of x values
real y[ARB] # output array of y values
int nstars # number of stars
real xmin, xmax # x coordinate limits
real ymin, ymax # y coordinate limits
long seed # seed for random number generator
int i
real urand()
begin
# Compute x and y values between 0 and 1.
do i = 1, nstars {
x[i] = urand (seed)
y[i] = urand (seed)
}
# Map these values into the data range.
call amapr (x, x, nstars, 0.0, 1.0, xmin, xmax)
call amapr (y, y, nstars, 0.0, 1.0, ymin, ymax)
end
# ST_HBSAMPLE -- Compute a set of x and y values with a Hubble density
# distribution.
procedure st_hbsample (x, y, nstars, core, base, xc, yc, xmin, xmax, ymin, ymax,
nsample, order, seed)
real x[ARB] # output array of x values
real y[ARB] # output array of y values
int nstars # number of stars
real core # Hubble core radius
real base # baseline density
real xc, yc # x and y center coordinates
real xmin, xmax # x range
real ymin, ymax # y range
int nsample # number of sample points
int order # order of spline fit
long seed # seed for random number generator
int i, ier
pointer sp, rad, prob, w, cv
real r1, r2, r3, r4, rmin, rmax, rval, dr, theta
real urand(), cveval()
begin
# Allocate space for the fits.
call smark (sp)
call salloc (rad, nsample, TY_REAL)
call salloc (prob, nsample, TY_REAL)
call salloc (w, nsample, TY_REAL)
# Compute the maximum radial distance from the center and
# the sampling interval.
r1 = (xmin - xc) ** 2 + (ymin - yc) ** 2
r2 = (xmax - xc) ** 2 + (ymin - yc) ** 2
r3 = (xmax - xc) ** 2 + (ymax - yc) ** 2
r4 = (xmin - xc) ** 2 + (ymax - yc) ** 2
if (xc >= xmin && xc <= xmax && yc >= ymin && yc <= ymax)
rmin = 0.0
else if (yc >= ymin && yc <= ymax)
rmin = min (abs (xmin - xc), abs (xmax - xc))
else if (xc >= xmin && xc <= xmax)
rmin = min (abs (ymin - yc), abs (ymax - yc))
else
rmin = sqrt (min (r1, r2, r3, r4))
rmax = sqrt (max (r1, r2, r3, r4))
dr = (rmax - rmin) / (nsample - 1)
# Compute the integral of the sampling function.
r1 = core ** 2
rval = rmin
do i = 1, nsample {
Memr[rad+i-1] = rval
r2 = (core + rval) / core
Memr[prob+i-1] = r1 * (log (r2) + 1.0 / r2 - 1.0) +
base * rval ** 2 / 2.0
rval = rval + dr
}
# Normalize the probability function.
call alimr (Memr[prob], nsample, rmin, rmax)
call amapr (Memr[prob], Memr[prob], nsample, rmin, rmax, 0.0, 1.0)
# Fit the inverse of the integral of the probability function
call cvinit (cv, SPLINE3, order, 0.0, 1.0)
call cvfit (cv, Memr[prob], Memr[rad], Memr[w], nsample, WTS_UNIFORM,
ier)
# Sample the computed function.
if (ier == OK) {
i = 0
repeat {
rval = cveval (cv, urand (seed))
theta = DEGTORAD (360.0 * urand (seed))
x[i+1] = rval * cos (theta) + xc
y[i+1] = rval * sin (theta) + yc
if (x[i+1] >= xmin && x[i+1] <= xmax && y[i+1] >= ymin &&
y[i+1] <= ymax)
i = i + 1
} until (i >= nstars)
} else {
call amovkr ((xmin + xmax) / 2.0, x, nstars)
call amovkr ((ymin + ymax) / 2.0, y, nstars)
call printf ("Error computing the spatial probability function.\n")
}
# Free up the space.
call cvfree (cv)
call sfree (sp)
end
# ST_SFSAMPLE -- Compute a sample of x and y coordinate values based
# on a user supplied spatial density function.
procedure st_sfsample (r, rprob, nsf, x, y, nstars, nsample, order, xc, yc,
xmin, xmax, ymin, ymax, seed)
real r[ARB] # input array of radii
real rprob[ARB] # input array of relative probabilities
int nsf # number of input points
real x[ARB] # output x coordinate array
real y[ARB] # output y coordinate array
int nstars # number of stars
int nsample # number of sample points
int order # order of the spline fit
real xc, yc # x and y center coordiantes
real xmin, xmax # min and max x values
real ymin, ymax # min and max y values
long seed # value of the seed
int itemp, i, ier
pointer sp, w, rad, iprob, cv, asi
real rfmin, rfmax, dr, rval, theta, imin, imax
real cveval(), asigrl(), urand()
begin
# Allocate space for fitting.
itemp = max (nsf, nsample)
call smark (sp)
call salloc (rad, nsample, TY_REAL)
call salloc (iprob, nsample, TY_REAL)
call salloc (w, itemp, TY_REAL)
# Smooth the relative probability function function.
call alimr (r, nsf, rfmin, rfmax)
itemp = min (order, max (1, nsf / 4))
call cvinit (cv, SPLINE3, itemp, rfmin, rfmax)
call cvfit (cv, r, rprob, Memr[w], nsf, WTS_UNIFORM, ier)
# Evaluate the smoothed function at equal intervals in r,
# Multiplying by r to prepare for the area integration.
if (ier == OK) {
rval = rfmin
dr = (rfmax - rfmin) / (nsample - 1)
do i = 1, nsample {
Memr[rad+i-1] = rval
Memr[iprob+i-1] = rval * cveval (cv, rval)
rval = rval + dr
}
call cvfree (cv)
} else {
call printf ("Error smoothing the user spatial density function.\n")
call amovkr ((xmin + xmax) / 2.0, x, nstars)
call amovkr ((ymin + ymax) / 2.0, y, nstars)
call cvfree (cv)
call sfree (sp)
return
}
# Evaluate the integral.
call asiinit (asi, II_SPLINE3)
call asifit (asi, Memr[iprob], nsample)
Memr[iprob] = 0.0
do i = 2, nsample
Memr[iprob+i-1] = Memr[iprob+i-2] + asigrl (asi, real (i - 1),
real (i))
call alimr (Memr[iprob], nsample, imin, imax)
call amapr (Memr[iprob], Memr[iprob], nsample, imin, imax, 0.0, 1.0)
call asifree (asi)
# Fit the inverse of the integral of the probability function.
call cvinit (cv, SPLINE3, order, 0.0, 1.0)
call cvfit (cv, Memr[iprob], Memr[rad], Memr[w], nsample, WTS_UNIFORM,
ier)
# Sample the computed function.
if (ier == OK) {
i = 0
repeat {
rval = cveval (cv, urand (seed))
theta = DEGTORAD (360.0 * urand (seed))
x[i+1] = rval * cos (theta) + xc
y[i+1] = rval * sin (theta) + yc
if (x[i+1] >= xmin && x[i+1] <= xmax && y[i+1] >= ymin &&
y[i+1] <= ymax)
i = i + 1
} until (i >= nstars)
} else {
call printf (
"Error fitting the spatial probability function.\n")
call amovkr ((xmin + xmax) / 2.0, x, nstars)
call amovkr ((ymin + ymax) / 2.0, y, nstars)
}
call cvfree (cv)
# Free space.
call sfree (sp)
end
define BUFSIZE 200
# ST_GFETCHXY -- Fetch two real values from a text file.
int procedure st_gfetchxy (sf, x, y)
int sf # input text file descriptor
pointer x # pointer to the x array
pointer y # pointer to the y array
int bufsize, npts
int fscan(), nscan()
begin
call seek (sf, BOF)
call malloc (x, BUFSIZE, TY_REAL)
call malloc (y, BUFSIZE, TY_REAL)
bufsize = BUFSIZE
npts = 0
while (fscan (sf) != EOF) {
call gargr (Memr[x+npts])
call gargr (Memr[y+npts])
if (nscan () != 2)
next
npts = npts + 1
if (npts < bufsize)
next
bufsize = bufsize + BUFSIZE
call realloc (x, bufsize, TY_REAL)
call realloc (y, bufsize, TY_REAL)
}
call realloc (x, npts, TY_REAL)
call realloc (y, npts, TY_REAL)
return (npts)
end
|