1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
|
include <imhdr.h>
include <mwset.h>
include <math.h>
define SZ_KEYWORD 8
define SZ_PLATECOEFF 20
define SZ_CDMATX 4
# AT_MKDSS -- Compute the FITS WCS from the general plate solution for a
# DSS image. This routine assumes that the geometry of the DSS image has not
# been modified since it was extracted, i.e. it has not been shifed,rotated,
# scaled, transposed etc. This routine has been adapted from one in the STSDAS
# GASP package, whose maim limitation for IRAF purposes was that it bypassed
# the IRAF MWCS routines. Return OK it the header is successfully updated,
# ERR otherwise.
int procedure at_mkdss (im, update, verbose)
pointer im #I the DSS image descriptor
bool update #I update rather than list the wcs ?
bool verbose #I verbose mode ?
double amdx[SZ_PLATECOEFF] # the RA plate solution coefficients
double amdy[SZ_PLATECOEFF] # the DEC plate solution coefficients
double plate_cen_x # the x center position in microns
double plate_cen_y # the y center position in microns
double plate_cen_ra # the RA plate center in radians
double plate_cen_dec # the DEC plate center in radians
double x_pixel_size # the x step size in microns
double y_pixel_size # the y step size in microns
double plate_scale # the plate sclae in arcsec / mm
double im_x_center_pix # the x of ll corner of scanned plate
double im_y_center_pix # the y of ll corner of scanned plate
double ra_s # the plate center RA in seconds
double dec_s # the plate center DEC in seconds
double object_mag # the object magnitude
double object_col # the object color
int ra_h, ra_m # the plate center RA hours, minutes
int dec_d, dec_m # the plate center DEC degrees, minutes
char dec_sign # the plate center DEC sign +/-
int xcorner # the ll x of image w/r to plate
int ycorner # the ll y of image w/r to plate
int xsize # naxis1
int ysize # naxis2
double crpix1, crpix2, crval1, crval2, cdmatx[SZ_CDMATX]
int i
char parname[SZ_KEYWORD]
double imgetd()
real imgetr()
int imaccf(), imgeti()
errchk imgetr(), imgetd(), imgeti()
begin
# Check that the image is 2D, if not it is not a DSS image.
if (IM_NDIM(im) != 2)
return (ERR)
# See if image header contains the general plate solution.
if (imaccf (im,"PPO3 ") == NO)
return (ERR)
# If we have an old DSS image, i.e. the one with the CRPIX rather
# than CNPIX keywords, rename CRPIX to CNPIX and proceed.
# this keyword to CNPIX and proceed.
if (imaccf (im,"CRPIX1") == YES || imaccf (im, "CRPIX2") == YES) {
if (imaccf (im,"CRVAL1") == YES || imaccf (im, "CRVAL2") == YES) {
if (imaccf (im,"CD1_1") == NO && imaccf (im, "CD1_2") == NO &&
imaccf (im, "CD2_1") == NO && imaccf (im, "CD2_2") == NO) {
# This is the case when we have CRPIX, CRVAL and no CD
# so, proceed to calculate the WCS again.
iferr (crpix1 = imgetr (im, "CRPIX1"))
return (ERR)
iferr (crpix2 = imgetr (im, "CRPIX2"))
return (ERR)
call imdelf (im, "CRPIX1")
call imaddr (im, "CNPIX1", real (crpix1))
call imdelf (im, "CRPIX2")
call imaddr (im, "CNPIX2", real (crpix2))
}
} else {
iferr (crpix1 = imgetr (im, "CRPIX1"))
return (ERR)
iferr (crpix2 = imgetr (im, "CRPIX2"))
return (ERR)
call imdelf (im, "CRPIX1")
call imaddr (im, "CNPIX1", real (crpix1))
call imdelf (im, "CRPIX2")
call imaddr (im, "CNPIX2", real (crpix2))
}
}
if (imaccf (im,"CNPIX1") == NO || imaccf (im, "CNPIX2") == NO )
return (ERR)
# Get the plate solution.
iferr {
# Get the plate center parameters.
plate_cen_x = imgetd (im, "PPO3 ")
plate_cen_y = imgetd (im, "PPO6 ")
x_pixel_size = imgetd (im, "XPIXELSZ")
y_pixel_size = imgetd (im, "YPIXELSZ")
plate_scale = imgetd (im, "PLTSCALE")
ra_h = imgeti (im, "PLTRAH ")
ra_m = imgeti (im, "PLTRAM ")
ra_s = imgetd (im, "PLTRAS ")
call imgstr (im, "PLTDECSN", dec_sign, 1)
dec_d = imgeti (im, "PLTDECD ")
dec_m = imgeti (im, "PLTDECM ")
dec_s = imgetd (im, "PLTDECS ")
plate_cen_ra = DDEGTORAD ((ra_h + ra_m / 60.0d0 + ra_s /
3600.0d0) * 15.0d0)
plate_cen_dec = DDEGTORAD (dec_d + dec_m / 60.0d0 + dec_s /
3600.0d0)
if (dec_sign == '-')
plate_cen_dec = -plate_cen_dec
# Get general plate solution coefficients
do i = 1, SZ_PLATECOEFF {
call sprintf (parname, SZ_KEYWORD, "AMDX%d")
call pargi(i)
amdx[i] = imgetd (im, parname)
}
do i = 1, SZ_PLATECOEFF {
call sprintf (parname, SZ_KEYWORD, "AMDY%d")
call pargi(i)
amdy[i] = imgetd (im, parname)
}
xcorner = imgetr (im, "CNPIX1")
ycorner = imgetr (im, "CNPIX2")
object_mag = 0.0d0
object_col = 0.0d0
} then
return (ERR)
xsize = IM_LEN(im,1)
ysize = IM_LEN(im,2)
crpix1 = xsize / 2.0d0
crpix2 = ysize / 2.0d0
# Center of image w/r to original lower left corner of scanned plate.
im_x_center_pix = xcorner + (xsize / 2.0d0) - 0.5d0
im_y_center_pix = ycorner + (ysize / 2.0d0) - 0.5d0
# Calculate equatorial coordinates for the center of subset giving
# the complete plate solution w/r to the original lower left corner.
call ccgseq (plate_cen_ra,
plate_cen_dec,
plate_cen_x,
plate_cen_y,
x_pixel_size,
y_pixel_size,
plate_scale,
amdx,
amdy,
im_x_center_pix,
im_y_center_pix,
object_mag,
object_col,
crval1,
crval2)
# Calculate CD matrix values for the input subset from the original
# plate solution.
call calcds (plate_cen_ra,
plate_cen_dec,
plate_cen_x,
plate_cen_y,
xcorner,
ycorner,
x_pixel_size,
y_pixel_size,
plate_scale,
xsize,
ysize,
crval1,
crval2,
amdx,
amdy,
cdmatx)
# Update the image header.
crval1 = DRADTODEG (crval1)
crval2 = DRADTODEG (crval2)
if (verbose || ! update)
call printf (" Converting DSS wcs to FITS wcs\n")
call at_dmwcs (im, crpix1, crpix2, crval1, crval2, cdmatx, update)
return (OK)
end
define NEWCD Memd[ncd+(($2)-1)*ndim+($1)-1]
# AT_DMWCS -- Create new image WCS from the approximation to the DSS plate
# solution. This routine assumes that the geometry of the DSS image has
# not been changed since since the image has been exracted from the image
# survey.
procedure at_dmwcs (im, xref, yref, lngref, latref, cdmatx, update)
pointer im #I pointer to the input image
double xref, yref #I the reference point in pixels
double lngref, latref #I the reference point in degrees
double cdmatx[ARB] #I CD1_1, CD1_2, CD2_1, CD2_2
bool update #I update rather than list the wcs ?
pointer mw, mwnew
pointer sp, projstr, r, w, cd, ltm, ltv, iltm, nr, ncd, axno, axval, axes
int ndim, ax1, ax2, naxes
pointer mw_openim(), mw_open()
int mw_stati()
errchk mw_newsystem()
begin
mw = mw_openim (im)
ndim = mw_stati (mw, MW_NPHYSDIM)
# Allocate working memory for the vectors and matrices.
call smark (sp)
call salloc (projstr, SZ_LINE, TY_CHAR)
call salloc (r, ndim, TY_DOUBLE)
call salloc (w, ndim, TY_DOUBLE)
call salloc (cd, ndim * ndim, TY_DOUBLE)
call salloc (ltm, ndim * ndim, TY_DOUBLE)
call salloc (ltv, ndim, TY_DOUBLE)
call salloc (iltm, ndim * ndim, TY_DOUBLE)
call salloc (nr, ndim, TY_DOUBLE)
call salloc (ncd, ndim * ndim, TY_DOUBLE)
call salloc (axno, IM_MAXDIM, TY_INT)
call salloc (axval, IM_MAXDIM, TY_INT)
call salloc (axes, IM_MAXDIM, TY_INT)
# Open the new wcs.
mwnew = mw_open (NULL, ndim)
call mw_gsystem (mw, Memc[projstr], SZ_LINE)
iferr {
call mw_newsystem (mw, "image", ndim)
} then {
call mw_newsystem (mwnew, Memc[projstr], ndim)
} else {
call mw_newsystem (mwnew, "image", ndim)
}
# Set the LTERM.
call mw_gltermd (mw, Memd[ltm], Memd[ltv], ndim)
call mw_sltermd (mwnew, Memd[ltm], Memd[ltv], ndim)
# Store the old axis map for later use.
call mw_gaxmap (mw, Memi[axno], Memi[axval], ndim)
# Get the 2 logical axes.
call mw_gaxlist (mw, 03B, Memi[axes], naxes)
ax1 = Memi[axes]
ax2 = Memi[axes+1]
# Set the axes and projection type.
call sprintf (Memc[projstr], SZ_LINE,
"axis 1: axtype = ra axis 2: axtype = dec ")
call mw_swtype (mwnew, Memi[axes], ndim, "tan", Memc[projstr])
# Set the reference point world coordinates.
Memd[w+ax1-1] = lngref
Memd[w+ax2-1] = latref
# Set the reference point pixel coordinates.
Memd[nr+ax1-1] = xref
Memd[nr+ax2-1] = yref
# Compute the new CD matrix.
NEWCD(ax1,ax1) = cdmatx[1] # xscale * cos (DEGTORAD(xrot)) / 3600.0d0
NEWCD(ax2,ax1) = cdmatx[2] # -yscale * sin (DEGTORAD(yrot)) / 3600.0d0
NEWCD(ax1,ax2) = cdmatx[3] # xscale * sin (DEGTORAD(xrot)) / 3600.0d0
NEWCD(ax2,ax2) = cdmatx[4] # yscale * cos (DEGTORAD(yrot)) / 3600.0d0
# List the new wcs.
if (! update)
call at_mwshow (mwnew, Memd[ltv], Memd[ltm], Memd[w], Memd[nr],
Memd[ncd], ndim)
# Recompute and store the new wcs.
call mw_saxmap (mwnew, Memi[axno], Memi[axval], ndim)
call mwmmuld (Memd[ncd], Memd[ltm], Memd[cd], ndim)
call mwinvertd (Memd[ltm], Memd[iltm], ndim)
call asubd (Memd[nr], Memd[ltv], Memd[r], ndim)
call mwvmuld (Memd[iltm], Memd[r], Memd[nr], ndim)
call mw_swtermd (mwnew, Memd[nr], Memd[w], Memd[cd], ndim)
# Update the image wcs.
if (update)
call mw_saveim (mwnew, im)
call mw_close (mwnew)
call mw_close (mw)
call sfree (sp)
end
|