1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
|
include <error.h>
include <math.h>
# T_GRATINGS -- Compute grating parameters.
# Given a subset of grating parameters the remainder are computed.
procedure t_gratings()
bool e # Echelle grating?
real f # Focal length (mm)
real g # Grating grooves per mm
real b # Blaze angle (degrees)
real t # Angle of incidence (degrees)
int m # Order
real w # Blaze wavelength (Angstroms)
real d # Blaze dispersion (Angstroms / mm)
bool clgetb()
int clgeti()
real clgetr()
begin
# Input grating parameters.
e = clgetb ("echelle")
f = clgetr ("f")
g = clgetr ("gmm")
b = clgetr ("blaze")
t = clgetr ("theta")
m = clgeti ("order")
w = clgetr ("wavelength")
d = clgetr ("dispersion")
# Derive and check grating parameters.
iferr (call ast_grating (e, f, g, b, t, m, w, d))
call erract (EA_WARN)
# Print final parameters.
call printf ("Grating parameters:\n")
call printf (" Focal length = %g mm\n")
call pargr (f)
call printf (" Grating = %g grooves/mm\n")
call pargr (g)
call printf (" Blaze angle = %g degrees\n")
call pargr (b)
call printf (" Incidence angle = %g degrees\n")
call pargr (t)
call printf (" Order = %d\n")
call pargi (m)
call printf (" Blaze wavelength = %g Angstroms\n")
call pargr (w)
call printf (" Blaze dispersion = %g Angstroms/mm\n")
call pargr (d)
end
# Definitions of INDEF parameter flags.
define F 1B
define G 2B
define B 4B
define T 10B
define M 20B
define W 40B
define D 100B
# Combinations
define FG 3B
define FB 5B
define FT 11B
define FM 21B
define FW 41B
define GB 6B
define GT 12B
define GW 42B
define GD 102B
define BT 14B
define BM 24B
define BW 44B
define BD 104B
define TM 30B
define TW 50B
define TD 110B
define MW 60B
define MD 120B
define WD 140B
# AST_GRATING -- Derive and check grating parameters.
procedure ast_grating (e, f, g, b, t, m, w, d)
bool e
real f, g, b, t, w, d, x
int m
int i, flags
define err_ 10
begin
if (!IS_INDEF(f)) {
if (f <= 0.)
f = INDEF
}
if (!IS_INDEF(g)) {
if (g <= 0.)
g = INDEF
else
g = g / 1e7
}
if (!IS_INDEF(b)) {
b = DEGTORAD (b)
if (b == 0. && t == 0.)
t = INDEF
}
if (!IS_INDEF(t)) {
t = DEGTORAD (t)
if (t > PI && !IS_INDEF(b))
t = t - TWOPI + b
}
if (!IS_INDEFI(m) && m <= 0)
m = INDEFI
if (!IS_INDEF(w) && w <= 0.)
w = INDEF
if (!IS_INDEF(d) && d <= 0.)
d = INDEF
flags = 0
if (IS_INDEF(f))
flags = flags + F
if (IS_INDEF(g))
flags = flags + G
if (IS_INDEF(b))
flags = flags + B
if (IS_INDEF(t))
flags = flags + T
if (IS_INDEFI(m))
flags = flags + M
if (IS_INDEF(w))
flags = flags + W
if (IS_INDEF(d))
flags = flags + D
switch (flags) {
case 0, F, G, B, T, M, W, D:
switch (flags) {
case F:
f = cos (2 * b - t) / (g * m * d)
case G:
g = (sin (t) + sin (2 * b - t)) / (m * w)
if (g == 0.)
g = INDEF
case B:
if (t > PI) {
x = g * m * w / (2 * cos (t))
if (abs (x) > 1.)
goto err_
b = asin (x)
t = t - TWOPI + b
} else {
x = g * m * w - sin (t)
if (abs (x) > 1.)
goto err_
b = (t + asin (x)) / 2
}
case T:
x = g * m * w / (2 * sin(b))
if (abs (x) > 1.)
goto err_
if (e)
t = b + acos (x)
else
t = b - acos (x)
case M:
m = max (1, nint ((sin(t) + sin(2*b-t)) / (g * w)))
}
if (!IS_INDEF(g)) {
w = (sin (t) + sin (2 * b - t)) / (g * m)
d = cos (2 * b - t) / (f * g * m)
}
case FG:
x = (sin (t) + sin (2 * b - t)) / (m * w)
if (x == 0.)
goto err_
g = x
f = cos (2 * b - t) / (g * m * d)
case FB:
if (t > PI) {
x = g * m * w / (2 * cos (t))
if (abs (x) > 1.)
goto err_
b = asin (x)
t = t - TWOPI + b
} else {
x = g * m * w - sin (t)
if (abs (x) > 1.)
goto err_
b = (t + asin (x)) / 2
}
f = cos (2 * b - t) / (g * m * d)
case FT:
x = g * m * w / (2 * sin (b))
if (abs (x) > 1.)
goto err_
if (e)
t = b + acos (x)
else
t = b - acos (x)
f = cos (2 * b - t) / (g * m * d)
case FM:
m = nint ((sin (t) + sin (2 * b - t)) / (g * w))
f = cos (2 * b - t) / (g * m * d)
w = (sin (t) + sin (2 * b - t)) / (g * m)
d = cos (2 * b - t) / (f * g * m)
case FW:
w = (sin (t) + sin (2 * b - t)) / (g * m)
f = cos (2 * b - t) / (g * m * d)
case GB:
x = f * d / w
if (t > PI) {
b = atan (1 / (2 * x - tan (t)))
t = t - TWOPI + b
} else {
x = (tan (t) - x) / (1 + 2 * x * tan (t))
b = atan (x + sqrt (1 + x * x))
}
g = (sin (t) + sin (2 * b - t)) / (m * w)
case GT:
t = b + atan (2 * f * d / w - 1 / tan (b))
g = (sin (t) + sin (2 * b - t)) / (m * w)
case GW:
g = cos (2 * b - t) / (f * m * d)
if (g == 0.)
g = INDEF
else
w = (sin (t) + sin (2 * b - t)) / (g * m)
case GD:
x = (sin (t) + sin (2 * b - t)) / (m * w)
if (x == 0.)
goto err_
g = x
d = cos (2 * b - t) / (f * g * m)
case BT:
x = f * g * m * d
if (abs (x) > 1.)
goto err_
x = acos (x)
x = g * m * w - sin (x)
if (abs (x) > 1.)
goto err_
t = asin (x)
b = (acos (f * g * m * d) + t) / 2
case BM:
x = f * d / w
if (t > PI) {
b = atan (1 / (2 * x - tan (t)))
t = t - TWOPI + b
} else {
x = (tan (t) - x) / (1 + 2 * x * tan (t))
b = atan (x + sqrt (1 + x * x))
}
m = max (1, nint ((sin(t) + sin(2*b-t)) / (g * w)))
b = (t + asin (g * m * w - sin (t))) / 2
w = (sin (t) + sin (2 * b - t)) / (g * m)
d = cos (2 * b - t) / (f * g * m)
case BW:
b = (t + acos (f * g * m * d)) / 2
w = (sin (t) + sin (2 * b - t)) / (g * m)
case BD:
if (t > PI) {
x = g * m * w / (2 * cos (t))
if (abs (x) > 1.)
goto err_
b = asin (x)
t = t - TWOPI + b
} else {
x = g * m * w - sin (t)
if (abs (x) > 1.)
goto err_
b = (t + asin (x)) / 2
}
d = cos (2 * b - t) / (f * g * m)
case TM:
x = f * d / w
x = b + 2 * atan (x - 1 / (2 * tan (b)))
i = max (1, nint ((sin(x) + sin(2*b-x)) / (g * w)))
x = g * i * w / (2 * sin (b))
if (abs (x) > 1.)
goto err_
if (e)
t = b + acos (x)
else
t = b - acos (x)
m = i
w = (sin (t) + sin (2 * b - t)) / (g * m)
d = cos (2 * b - t) / (f * g * m)
case TW:
x = f * g * m * d
if (abs (x) > 1.)
goto err_
t = 2 * b - acos (x)
w = (sin (t) + sin (2 * b - t)) / (g * m)
case TD:
x = g * m * w / (2 * sin (b))
if (abs (x) > 1.)
goto err_
if (e)
t = b + acos (x)
else
t = b - acos (x)
d = cos (2 * b - t) / (f * g * m)
case MW:
m = max (1, nint (cos (2 * b - t) / (f * g * d)))
w = (sin (t) + sin (2 * b - t)) / (g * m)
d = cos (2 * b - t) / (f * g * m)
case MD:
m = max (1, nint ((sin(t) + sin(2*b-t)) / (g * w)))
w = (sin (t) + sin (2 * b - t)) / (g * m)
d = cos (2 * b - t) / (f * g * m)
case WD:
w = (sin (t) + sin (2 * b - t)) / (g * m)
d = cos (2 * b - t) / (f * g * m)
}
if (!IS_INDEF(g))
g = g * 1e7
if (!IS_INDEF(b))
b = RADTODEG (b)
if (!IS_INDEF(t))
t = RADTODEG (t)
if (IS_INDEF(f) || IS_INDEF(g) || IS_INDEF(b) || IS_INDEF(t) ||
IS_INDEF(m) || IS_INDEF(w) || IS_INDEF(d))
call error (1,
"Insufficient information to to determine grating parameters")
return
err_ if (!IS_INDEF(g))
g = g * 1e7
if (!IS_INDEF(b))
b = RADTODEG (b)
if (!IS_INDEF(t))
t = RADTODEG (t)
call error (2, "Impossible combination of grating parameters")
end
|