1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
|
# AP_ABOXR -- Vector boxcar smooth. The input vector is convolved with a
# uniform kernel of length knpix. Boundary extension is assumed to have
# been performed on the input array before entering the routine.
procedure ap_aboxr (in, out, npix, knpix)
real in[npix+knpix-1] # input array with boundary exntension
real out[npix] # output array
int npix # number of pixels
int knpix # length of the kernel
int i
real sum
begin
sum = 0.0
do i = 1, knpix - 1
sum = sum + in[i]
do i = 1, npix {
sum = sum + in[i+knpix-1]
out[i] = sum / knpix
sum = sum - in[i]
}
end
# AP_SBOXR -- Boxcar smooth for a vector that has not been boundary
# extended.
procedure ap_sboxr (in, out, npix, nsmooth)
real in[npix] # input array
real out[npix] # output array
int npix # number of pixels
int nsmooth # half width of smoothing box
int i, j, ib, ie, ns
real sum
begin
ns = 2 * nsmooth + 1
do i = 1, npix {
ib = max (i - nsmooth, 1)
ie = min (i + nsmooth, npix)
sum = 0.0
do j = ib, ie
sum = sum + in[j]
out[i] = sum / ns
}
end
# AP_ALIMR -- Compute the maximum and minimum data values and indices of a
# 1D array.
procedure ap_alimr (data, npts, mindat, maxdat, imin, imax)
real data[npts] # data array
int npts # number of points
real mindat, maxdat # min and max data value
int imin, imax # indices of min and max data values
int i
begin
imin = 1
imax = 1
mindat = data[1]
maxdat = data[1]
do i = 2, npts {
if (data[i] > maxdat) {
imax = i
maxdat = data[i]
}
if (data[i] < mindat) {
imin = i
mindat = data[i]
}
}
end
# AP_IALIMR -- Compute the maximum and minimum data values of a 1D indexed
# array
procedure ap_ialimr (data, index, npts, mindat, maxdat)
real data[npts] # data array
int index[npts] # index array
int npts # number of points
real mindat, maxdat # min and max data value
int i
begin
mindat = data[index[1]]
maxdat = data[index[1]]
do i = 2, npts {
if (data[index[i]] > maxdat)
maxdat = data[index[i]]
if (data[index[i]] < mindat)
mindat = data[index[i]]
}
end
# AP_ASUMR - Compute the sum of an index sorted array
real procedure ap_asumr (data, index, npts)
real data[npts] # data array
int index[npts] # index array
int npts # number of points
double sum
int i
begin
sum = 0.0d0
do i = 1, npts
sum = sum + data[index[i]]
return (real (sum))
end
# AP_AMAXEL -- Find the maximum value and its index of a 1D array.
procedure ap_amaxel (a, npts, maxdat, imax)
real a[ARB] # the data array
int npts # number of points
real maxdat # maximum value
int imax # imdex of max value
int i
begin
maxdat = a[1]
imax = 1
do i = 2, npts {
if (a[i] > maxdat) {
maxdat = a[i]
imax = i
}
}
end
# AHGMR -- Accumulate the histogram of the input vector. The output vector
# hgm (the histogram) should be cleared prior to the first call. The procedure
# returns the number of data values it could not include in the histogram.
int procedure aphgmr (data, wgt, npix, hgm, nbins, z1, z2)
real data[ARB] # data vector
real wgt[ARB] # weights vector
int npix # number of pixels
real hgm[ARB] # output histogram
int nbins # number of bins in histogram
real z1, z2 # greyscale values of first and last bins
real dz
int bin, i, nreject
begin
if (nbins < 2)
return (0)
nreject = 0
dz = real (nbins - 1) / real (z2 - z1)
do i = 1, npix {
if (data[i] < z1 || data[i] > z2) {
nreject = nreject + 1
wgt[i] = 0.0
next
}
bin = int ((data[i] - z1) * dz) + 1
hgm[bin] = hgm[bin] + 1.0
}
return (nreject)
end
# APHIGMR -- Accumulate the histogram of the input vector. The output vector
# hgm (the histogram) should be cleared prior to the first call. The procedure
# returns the number of data values it could not include in the histogram.
int procedure aphigmr (data, wgt, index, npix, hgm, nbins, z1, z2)
real data[ARB] # data vector
real wgt[ARB] # weights vector
int index[ARB] # index vector
int npix # number of pixels
real hgm[ARB] # output histogram
int nbins # number of bins in histogram
real z1, z2 # greyscale values of first and last bins
real dz
int bin, i, nreject
begin
if (nbins < 2)
return (0)
nreject = 0
dz = real (nbins - 1) / real (z2 - z1)
do i = 1, npix {
if (data[index[i]] < z1 || data[index[i]] > z2) {
nreject = nreject + 1
wgt[index[i]] = 0.0
next
}
bin = int ((data[index[i]] - z1) * dz) + 1
hgm[bin] = hgm[bin] + 1.0
}
return (nreject)
end
# AP_IJTOR -- Compute radius values given the center coordinates, the line
# number in a the subraster and the length of the subraster x axis.
procedure ap_ijtor (r, nr, line, xc, yc)
real r[nr] # array of output r values
int nr # length of r array
int line # line number
real xc, yc # subraster center
int i
real temp
begin
temp = (line - yc ) ** 2
do i = 1, nr
r[i] = sqrt ((i - xc) ** 2 + temp)
end
# AP_IJTOR2 -- Compute radius values given the center coordinates and the size
# of the subraster.
procedure ap_ijtor2 (r, nx, ny, xc, yc)
real r[nx,ARB] # array of output r values
int nx # x dimension of output array
int ny # Y dimension of output array
real xc, yc # subraster center
int i, j
real temp
begin
do j = 1, ny {
temp = (j - yc) ** 2
do i = 1, nx
r[i,j] = sqrt ((i - xc) ** 2 + temp)
}
end
# AP_2DALIMR -- Compute min and max values of a 2D array along with
# the indices of the minimum and maximum pixel.
procedure ap_2dalimr (data, nx, ny, mindat, maxdat, imin, jmin, imax, jmax)
real data[nx, ny] # data
int nx, ny # array dimensions
real mindat, maxdat # min, max data values
int imin, jmin # indices of min element
int imax, jmax # indices of max element
int i, j
begin
imin = 1
jmin = 1
imax = 1
jmax = 1
mindat = data[1,1]
maxdat = data[1,1]
do j = 2, ny {
do i = 1, nx {
if (data[i,j] < mindat) {
imin = i
jmin = j
mindat = data[i,j]
} else if (data[i,j] > maxdat) {
imax = i
jmax = j
maxdat = data[i,j]
}
}
}
end
define LOGPTR 20 # log2(maxpts) (1e6)
# APQSORT -- Vector Quicksort. In this version the index array is
# sorted.
procedure apqsort (data, a, b, npix)
real data[ARB] # data array
int a[ARB], b[ARB] # index array
int npix # number of pixels
int i, j, lv[LOGPTR], p, uv[LOGPTR], temp
real pivot
begin
# Initialize the indices for an inplace sort.
do i = 1, npix
a[i] = i
call amovi (a, b, npix)
p = 1
lv[1] = 1
uv[1] = npix
while (p > 0) {
# If only one elem in subset pop stack otherwise pivot line.
if (lv[p] >= uv[p])
p = p - 1
else {
i = lv[p] - 1
j = uv[p]
pivot = data[b[j]]
while (i < j) {
for (i=i+1; data[b[i]] < pivot; i=i+1)
;
for (j=j-1; j > i; j=j-1)
if (data[b[j]] <= pivot)
break
if (i < j) { # out of order pair
temp = b[j] # interchange elements
b[j] = b[i]
b[i] = temp
}
}
j = uv[p] # move pivot to position i
temp = b[j] # interchange elements
b[j] = b[i]
b[i] = temp
if (i-lv[p] < uv[p] - i) { # stack so shorter done first
lv[p+1] = lv[p]
uv[p+1] = i - 1
lv[p] = i + 1
} else {
lv[p+1] = i + 1
uv[p+1] = uv[p]
uv[p] = i - 1
}
p = p + 1 # push onto stack
}
}
end
# APRECIPROCAL -- Compute the reciprocal of the absolute value of a vector.
procedure apreciprocal (a, b, npts, value)
real a[ARB] # the input vector
real b[ARB] # the output vector
int npts # the number of data points
real value # the value to be assigned to b[i] if a[i] = 0
int i
begin
do i = 1, npts {
if (a[i] > 0.0)
b[i] = 1.0 / a[i]
else if (a[i] < 0.0)
b[i] = - 1.0 / a[i]
else
b[i] = value
}
end
# AP_WLIMR -- Set the weights of all data points outside a given minimum and
# maximum values to zero. Compute the minimum and maximum values and their
# indices of the remaining data.
procedure ap_wlimr (pix, w, npts, datamin, datamax, dmin, dmax, imin, imax)
real pix[ARB] # input pixel array
real w[ARB] # weight array
int npts # number of points
real datamin # minimum good data point
real datamax # maximum good data point
real dmin # output data minimum
real dmax # output data maximum
int imin # index of the data minimum
int imax # index of the data maximum
int i
real value
begin
dmin = datamax
dmax = datamin
imin = 1
imax = 1
do i = 1, npts {
value = pix[i]
if ((value < datamin) || (value > datamax)) {
w[i] = 0.0
next
}
if (value < dmin) {
dmin = value
imin = i
} else if (value > dmax) {
dmax = value
imax = i
}
}
end
# APWSSQR -- Compute the weighted sum of the squares of a vector.
real procedure apwssqr (a, wgt, npts)
real a[ARB] # data array
real wgt[ARB] # array of weights
int npts # number of points
int i
real sum
begin
sum = 0.0
do i = 1, npts
sum = sum + wgt[i] * a[i] * a[i]
return (sum)
end
# AP_XYTOR -- Change the single integer coord of the sky pixels to a radial
# distance value. The integer coordinate is equal to coord = (i - xc + 1) +
# blklen * (j - yc).
procedure ap_xytor (coords, index, r, nskypix, xc, yc, blklen)
int coords[ARB] # coordinate array
int index[ARB] # the index array
real r[ARB] # radial coordinates
int nskypix # number of sky pixels
real xc, yc # center of sky subraster
int blklen # x dimension of sky subraster
int i
real x, y
begin
do i = 1, nskypix {
x = real (mod (coords[index[i]], blklen))
if (x == 0)
x = real (blklen)
y = (coords[index[i]] - x) / blklen + 1
r[i] = sqrt ((x - xc) ** 2 + (y - yc) ** 2)
}
end
# AP_W1SUR -- Linearly combine two vectors where the weight for the first
# vectors is 1.0 and is k2 for the second vector
procedure ap_w1sur (a, b, c, npts, k2)
real a[ARB] # the first input vector
real b[ARB] # the second input vector
real c[ARB] # the output vector
int npts # number of points
real k2 # the weigting factor for the second vector
int i
begin
do i = 1, npts
c[i] = a[i] + k2 * b[i]
end
# AP_INDEX -- Define an index array.
procedure ap_index (index, npix)
int index[ARB] # the index array
int npix # the number of pixels
int i
begin
do i = 1, npix
index[i] = i
end
|