aboutsummaryrefslogtreecommitdiff
path: root/noao/digiphot/apphot/daofind/apegkernel.x
blob: 3023098d50642785bc4ce429f3cb4839e78753ab (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
include <math.h>
include "../lib/find.h"

# Set up the gaussian fitting structure. 

# AP_EGPARAMS -- Calculate the parameters of the elliptical Gaussian needed
# to compute the kernel.

procedure ap_egparams (sigma, ratio, theta, nsigma, a, b, c, f, nx, ny)

real	sigma			# sigma of Gaussian in x
real	ratio			# Ratio of half-width in y to x
real	theta			# position angle of Gaussian
real	nsigma			# limit of convolution
real	a, b, c, f		# ellipse parameters
int	nx, ny			# dimensions of the kernel

real	sx2, sy2, cost, sint, discrim
bool	fp_equalr ()

begin
	# Define some temporary variables.
	sx2 = sigma ** 2
	sy2 = (ratio * sigma) ** 2
	cost = cos (DEGTORAD (theta))
	sint = sin (DEGTORAD (theta))

	# Compute the ellipse parameters.
	if (fp_equalr (ratio, 0.0)) {
	    if (fp_equalr (theta, 0.0) || fp_equalr (theta, 180.)) {
		a = 1. / sx2
		b = 0.0
		c = 0.0
	    } else if (fp_equalr (theta, 90.0)) {
		a = 0.0
		b = 0.0
		c = 1. / sx2
	    } else
		call error (0, "AP_EGPARAMS: Cannot make 1D Gaussian.")
	    f = nsigma ** 2 / 2.
	    nx = 2 * int (max (sigma * nsigma * abs (cost), RMIN)) + 1
	    ny = 2 * int (max (sigma * nsigma * abs (sint), RMIN)) + 1
	} else {
	    a = cost ** 2 / sx2 + sint ** 2 / sy2
	    b = 2. * (1.0 / sx2 - 1.0 / sy2) * cost * sint
	    c = sint ** 2 / sx2 + cost ** 2 / sy2
	    discrim = b ** 2 - 4. * a * c
	    f = nsigma ** 2 / 2.
	    nx = 2 * int (max (sqrt (-8. * c * f / discrim), RMIN)) + 1
	    ny = 2 * int (max (sqrt (-8. * a * f / discrim), RMIN)) + 1
	}
end


# AP_EGKERNEL -- Compute the elliptical Gaussian kernel.

real procedure ap_egkernel (gkernel, ngkernel, dkernel, skip, nx, ny, gsums, a,
	b, c, f)

real	gkernel[nx,ny]		# output Gaussian amplitude kernel
real	ngkernel[nx,ny]		# output normalized Gaussian amplitude kernel
real	dkernel[nx,ny]		# output Gaussian sky kernel
int	skip[nx,ny]		# output skip subraster
int	nx, ny			# input dimensions of the kernel
real	gsums[ARB]		# output array of gsums
real	a, b, c, f		# ellipse parameters

int	i, j, x0, y0, x, y
real	npts, rjsq, rsq, relerr,ef

begin
	# Initialize.
	x0 = nx / 2 + 1
	y0 = ny / 2 + 1
	gsums[GAUSS_SUMG] = 0.0
	gsums[GAUSS_SUMGSQ] = 0.0
	npts = 0.0

	# Compute the kernel and principal sums.
	do j = 1, ny {
	    y = j - y0
	    rjsq = y ** 2
	    do i = 1, nx {
		x = i - x0
		rsq = sqrt (x ** 2 + rjsq)
		ef = 0.5 * (a * x ** 2 + c * y ** 2 + b * x * y)
		gkernel[i,j] = exp (-1.0 * ef)
		if (ef <= f || rsq <= RMIN) {
		    #gkernel[i,j] = exp (-ef)
		    ngkernel[i,j] = gkernel[i,j]
		    dkernel[i,j] = 1.0
		    gsums[GAUSS_SUMG] = gsums[GAUSS_SUMG] + gkernel[i,j]
		    gsums[GAUSS_SUMGSQ] = gsums[GAUSS_SUMGSQ] +
		        gkernel[i,j] ** 2
		    skip[i,j] = NO
		    npts = npts + 1.0
		} else {
		    #gkernel[i,j] = 0.0
		    ngkernel[i,j] = 0.0
		    dkernel[i,j] = 0.0
		    skip[i,j] = YES
		}
	    }
	}

	# Store the remaining sums.
	gsums[GAUSS_PIXELS] = npts
	gsums[GAUSS_DENOM] = gsums[GAUSS_SUMGSQ] - gsums[GAUSS_SUMG] ** 2 /
	    npts
	gsums[GAUSS_SGOP] = gsums[GAUSS_SUMG] / npts

	# Normalize the amplitude kernel.
	do j = 1, ny {
	     do i = 1, nx {
	        if (skip[i,j] == NO)
		    ngkernel[i,j] = (gkernel[i,j] - gsums[GAUSS_SGOP]) /
			gsums[GAUSS_DENOM]
	    }
	}

	# Normalize the sky kernel
	do j = 1, ny {
	    do i = 1, nx {
		if (skip[i,j] == NO)
		    dkernel[i,j] = dkernel[i,j] / npts
	    }
	}

	relerr = 1.0 / gsums[GAUSS_DENOM]

	return (sqrt (relerr))
end