1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
|
include <mach.h>
include "../lib/fitsky.h"
# AP_CROSSCOR -- Procedure to compute the sky value by calculating the
# cross-correlation function of the histogram of the sky pixels and
# a Gaussian function with the same sigma as the sky distribution.
# The peak of the cross-correlation function is found by parabolic
# interpolation.
int procedure ap_crosscor (skypix, coords, wgt, index, nskypix, snx, sny, k1,
hwidth, binsize, smooth, losigma, hisigma, rgrow, maxiter, sky_mode,
sky_sigma, sky_skew, nsky, nsky_reject)
real skypix[ARB] # array of sky pixels
int coords[ARB] # array of sky coordinates for region growing
real wgt[ARB] # array of weights for rejection
int index[ARB] # array of sort indices
int nskypix # the number of sky pixels
int snx, sny # the maximum dimensions of sky raster
real k1 # half-width of the histogram in sky sigma
real hwidth # the input sky sigma
real binsize # the size of the histogram in sky sigma
int smooth # smooth the histogram before fitting (not used)
real losigma, hisigma # upper and lower rejection limits
real rgrow # region growing radius in pixels
int maxiter # maximum number of rejection cycles
real sky_mode # computed sky value
real sky_sigma # computed standard deviation of the sky pixels
real sky_skew # computed skew of sky pixels
int nsky # number of sky pixels used in fit
int nsky_reject # number of sky pixels rejected
double dsky, sumpx, sumsqpx, sumcbpx
int nreject, nbins, nker, nsmooth, ier, i, j
pointer sp, x, hgm, shgm, kernel
real dmin, dmax, hmin, hmax, dh, kmin, kmax, locut, hicut, sky_mean, cut
real sky_zero
int ap_grow_hist2(), aphigmr()
real ap_asumr(), apmedr()
begin
# Initialize.
nsky = nskypix
nsky_reject = 0
sky_mode = INDEFR
sky_sigma = INDEFR
sky_skew = INDEFR
if (nskypix <= 0)
return (AP_NOSKYAREA)
# Set up initial guess at sky mean, sigma and skew.
sky_zero = ap_asumr (skypix, index, nskypix) / nskypix
call ap_ialimr (skypix, index, nskypix, dmin, dmax)
call apfimoments (skypix, index, nskypix, sky_zero,
sumpx, sumsqpx, sumcbpx, sky_mean, sky_sigma, sky_skew)
sky_mean = apmedr (skypix, index, nskypix)
sky_mean = max (dmin, min (sky_mean, dmax))
# Compute the width and bin size of the histogram.
if (! IS_INDEFR(hwidth) && hwidth > 0.0) {
hmin = sky_mean - k1 * hwidth
hmax = sky_mean + k1 * hwidth
dh = binsize * hwidth
} else {
cut = min (sky_mean - dmin, dmax - sky_mean, k1 * sky_sigma)
hmin = sky_mean - cut
hmax = sky_mean + cut
dh = binsize * cut / k1
}
# Compute the number of bins in and the width of the kernel.
if (dh <= 0.0) {
nbins = 1
nker = 1
nsmooth = 1
dh = 0.0
} else {
nbins = 2 * nint ((hmax - sky_mean) / dh) + 1
nker = 2 * nint (2.0 * (hmax - sky_mean) / (dh * 3.0)) + 1
nsmooth = nbins - nker + 1
dh = (hmax - hmin) / (nbins - 1)
}
kmin = - dh * (nker / 2 + 0.5)
kmax = dh * (nker / 2 + 0.5)
# Test for a valid histogram.
if (nbins < 2 || k1 <= 0.0 || sky_sigma <= 0.0 || dh <= 0.0 ||
sky_sigma <= dh) {
sky_mode = sky_mean
sky_sigma = 0.0
sky_skew = 0.0
return (AP_NOHISTOGRAM)
}
# Allocate space for the histogram and kernel.
call smark (sp)
call salloc (x, nbins, TY_REAL)
call salloc (hgm, nbins, TY_REAL)
call salloc (shgm, nbins, TY_REAL)
call salloc (kernel, nker, TY_REAL)
# Set up x array.
do i = 1, nbins
Memr[x+i-1] = i
call amapr (Memr[x], Memr[x], nbins, 1.0, real (nbins),
hmin + 0.5 * dh, hmax + 0.5 * dh)
# Accumulate the histogram.
call aclrr (Memr[hgm], nbins)
call aclrr (Memr[shgm], nbins)
nsky_reject = nsky_reject + aphigmr (skypix, wgt, index, nskypix,
Memr[hgm], nbins, hmin, hmax)
nsky = nskypix - nsky_reject
# Perform the initial rejection cycle.
if (nsky_reject > 0.0) {
do i = 1, nskypix {
if (wgt[index[i]] <= 0.0) {
dsky = skypix[index[i]] - sky_zero
sumpx = sumpx - dsky
sumsqpx = sumsqpx - dsky ** 2
sumcbpx = sumcbpx - dsky ** 3
}
}
call apmoments (sumpx, sumsqpx, sumcbpx, nsky, sky_zero, sky_mean,
sky_sigma, sky_skew)
}
# Construct kernel and convolve with histogram.
if (sky_sigma > 0.0) {
call ap_gauss_kernel (Memr[kernel], nker, kmin, kmax, sky_sigma)
call acnvr (Memr[hgm], Memr[shgm+nker/2], nsmooth, Memr[kernel],
nker)
} else
call amovr (Memr[hgm], Memr[shgm], nbins)
call ap_corfit (Memr[x], Memr[shgm], nbins, sky_mode, ier)
sky_mode = max (dmin, min (sky_mode, dmax))
if (ier != OK) {
call sfree (sp)
return (ier)
}
if ((IS_INDEFR(losigma) && IS_INDEFR(hisigma)) || (sky_sigma <= dh) ||
maxiter < 1) {
call sfree (sp)
return (AP_OK)
}
# Fit histogram with pixel rejection and optional region growing.
do i = 1, maxiter {
# Compute new histogram limits.
if (IS_INDEFR(losigma))
locut = -MAX_REAL
else
locut = sky_mode - losigma * sky_sigma
if (IS_INDEFR(hisigma))
hicut = MAX_REAL
else
hicut = sky_mode + hisigma * sky_sigma
# Detect rejected pixels.
nreject = 0
do j = 1, nskypix {
if (skypix[index[j]] >= locut && skypix[index[j]] <= hicut)
next
if (rgrow > 0.0)
nreject = nreject + ap_grow_hist2 (skypix, coords,
wgt, nskypix, sky_zero, index[j], snx, sny,
Memr[hgm], nbins, hmin, hmax, rgrow, sumpx, sumsqpx,
sumcbpx)
else if (wgt[index[j]] > 0.0) {
call ap_hgmsub2 (Memr[hgm], nbins, hmin, hmax,
skypix[index[j]], sky_zero, sumpx, sumsqpx, sumcbpx)
wgt[index[j]] = 0.0
nreject = nreject + 1
}
}
if (nreject == 0)
break
# Update the sky parameters.
nsky_reject = nsky_reject + nreject
nsky = nskypix - nsky_reject
if (nsky <= 0)
break
call apmoments (sumpx, sumsqpx, sumcbpx, nsky, sky_zero, sky_mean,
sky_sigma, sky_skew)
if (sky_sigma <= dh)
break
# Recompute the peak of the histogram.
call ap_gauss_kernel (Memr[kernel], nker, kmin, kmax, sky_sigma)
call aclrr (Memr[shgm], nbins)
call acnvr (Memr[hgm], Memr[shgm+nker/2], nsmooth, Memr[kernel],
nker)
call ap_corfit (Memr[x], Memr[shgm], nbins, sky_mode, ier)
sky_mode = max (dmin, min (sky_mode, dmax))
if (ier != AP_OK)
break
}
# Return the appropriate error code.
call sfree (sp)
if (nsky == 0 || nsky_reject == nskypix) {
nsky = 0
nsky_reject = nskypix
sky_mode = INDEFR
sky_sigma = INDEFR
sky_skew = INDEFR
return (AP_NSKY_TOO_SMALL)
} else if (ier != AP_OK) {
sky_mode = sky_mean
sky_sigma = 0.0
sky_skew = 0.0
return (ier)
} else
return (AP_OK)
end
# AP_GAUSS_KERNEL -- Procedure to compute a Gaussian kernel of given length
# and sigma.
procedure ap_gauss_kernel (kernel, nker, kmin, kmax, sky_sigma)
real kernel[ARB] # kernel
int nker # length of kernel
real kmin, kmax # limits of the kernel
real sky_sigma # sigma of the sky
int i
real dk, x, sumx
begin
# Return 1 if unit sized kernel.
if (nker == 1) {
kernel[1] = 1.0
return
}
# Intialize.
sumx = 0.0
x = kmin
dk = (kmax - kmin ) / (nker - 1)
# Compute and normalize the kernel.
do i = 1, nker {
kernel[i] = exp (- (x ** 2) / (2. * sky_sigma ** 2))
sumx = sumx + kernel[i]
x = x + dk
}
do i = 1, nker
kernel[i] = kernel[i] / sumx
end
# AP_CORFIT -- Procedure to compute the peak of the cross-correlation
# function using parabolic interpolation.
procedure ap_corfit (x, shgm, nbins, sky_mode, ier)
real x[ARB] # x coordinates of histogram
real shgm[ARB] # convolved histogram
int nbins # number of histogram bins
real sky_mode # computed sky_mode
int ier # error code
int bin
real max, xo, dh1, dh2
begin
call ap_amaxel (shgm, nbins, max, bin)
if (max <= 0) {
ier = AP_FLAT_HIST
} else if (bin == 1) {
sky_mode = x[1]
ier = AP_OK
} else if (bin == nbins) {
sky_mode = x[nbins]
ier = AP_OK
} else {
xo = 0.5 * (x[bin] + x[bin-1])
dh1 = shgm[bin] - shgm[bin-1]
dh2 = shgm[bin] - shgm[bin+1]
sky_mode = xo + (x[bin] - x[bin-1]) * (dh1 / (dh1 + dh2))
ier = AP_OK
}
end
|