1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
|
include <imhdr.h>
include <math.h>
include <mach.h>
include "../lib/apphotdef.h"
include "../lib/fitskydef.h"
include "../lib/fitsky.h"
# APSKYBUF -- Procedure to fetch the sky pixels given the pointer to the
# IRAF image, the coordinates of the center and the size of the apphot
# sky annulus.
int procedure apskybuf (ap, im, wx, wy)
pointer ap # pointer to apphot structure
pointer im # pointer to the IRAF image
real wx, wy # center coordinates
int lenbuf
pointer sky
real annulus, dannulus, datamin, datamax
int ap_skypix(), ap_bskypix()
begin
# Check for 0 radius annulus.
sky = AP_PSKY(ap)
annulus = AP_ANNULUS(sky) * AP_SCALE(ap)
dannulus = AP_DANNULUS(sky) * AP_SCALE(ap)
if (dannulus <= 0.0)
return (AP_NOSKYAREA)
# Allocate space for sky pixels.
lenbuf = PI * (2.0 * annulus + dannulus + 1.0) * (dannulus + 0.5)
if (lenbuf != AP_LENSKYBUF(sky)) {
if (AP_SKYPIX(sky) != NULL)
call mfree (AP_SKYPIX(sky), TY_REAL)
call malloc (AP_SKYPIX(sky), lenbuf, TY_REAL)
if (AP_COORDS(sky) != NULL)
call mfree (AP_COORDS(sky), TY_INT)
call malloc (AP_COORDS(sky), lenbuf, TY_INT)
if (AP_INDEX(sky) != NULL)
call mfree (AP_INDEX(sky), TY_INT)
call malloc (AP_INDEX(sky), lenbuf, TY_INT)
if (AP_SWGT(sky) != NULL)
call mfree (AP_SWGT(sky), TY_REAL)
call malloc (AP_SWGT(sky), lenbuf, TY_REAL)
AP_LENSKYBUF(sky) = lenbuf
}
# Fetch the sky pixels.
if (IS_INDEFR(AP_DATAMIN(ap)) && IS_INDEFR(AP_DATAMAX(ap))) {
AP_NSKYPIX(sky) = ap_skypix (im, wx, wy, annulus, (annulus +
dannulus), Memr[AP_SKYPIX(sky)], Memi[AP_COORDS(sky)],
AP_SXC(sky), AP_SYC(sky), AP_SNX(sky), AP_SNY(sky))
AP_NBADSKYPIX(sky) = 0
} else {
if (IS_INDEFR(AP_DATAMIN(ap)))
datamin = -MAX_REAL
else
datamin = AP_DATAMIN(ap)
if (IS_INDEFR(AP_DATAMAX(ap)))
datamax = MAX_REAL
else
datamax = AP_DATAMAX(ap)
AP_NSKYPIX(sky) = ap_bskypix (im, wx, wy, annulus, (annulus +
dannulus), datamin, datamax, Memr[AP_SKYPIX(sky)],
Memi[AP_COORDS(sky)], AP_SXC(sky), AP_SYC(sky), AP_SNX(sky),
AP_SNY(sky), AP_NBADSKYPIX(sky))
}
if (AP_NSKYPIX(sky) <= 0) {
if (AP_NBADSKYPIX(sky) <= 0)
return (AP_SKY_OUTOFBOUNDS)
else
return (AP_NSKY_TOO_SMALL)
} else
return (AP_OK)
end
# AP_SKYPIX -- Procedure to fetch the sky pixels from the image
int procedure ap_skypix (im, wx, wy, rin, rout, skypix, coords, xc, yc,
nx, ny)
pointer im # pointer to IRAF image
real wx, wy # center of sky annulus
real rin, rout # inner and outer radius of sky annulus
real skypix[ARB] # skypixels
int coords[ARB] # sky subraster coordinates [i + nx * (j - 1)]
real xc, yc # center of sky subraster
int nx, ny # max dimensions of sky subraster (output)
int i, j, ncols, nlines, c1, c2, l1, l2, nskypix
pointer buf
real xc1, xc2, xl1, xl2, rin2, rout2, rj2, r2
pointer imgs2r()
#pointer tbuf
begin
if (rout <= rin)
return (0)
# Test for out of bounds sky regions.
ncols = IM_LEN(im,1)
nlines = IM_LEN(im,2)
xc1 = wx - rout
xc2 = wx + rout
xl1 = wy - rout
xl2 = wy + rout
if (xc2 < 1.0 || xc1 > real (ncols) || xl2 < 1.0 || xl1 > real (nlines))
return (0)
# Compute the column and line limits.
c1 = max (1.0, min (real (ncols), wx - rout)) + 0.5
c2 = min (real (ncols), max (1.0, wx + rout)) + 0.5
l1 = max (1.0, min (real (nlines), wy - rout)) + 0.5
l2 = min (real (nlines), max (1.0, wy + rout)) + 0.5
nx = c2 - c1 + 1
ny = l2 - l1 + 1
xc = wx - c1 + 1
yc = wy - l1 + 1
# Fetch the sky pixels.
rin2 = rin ** 2
rout2 = rout ** 2
nskypix = 0
do j = l1, l2 {
buf = imgs2r (im, c1, c2, j, j)
rj2 = (wy - j) ** 2
do i = c1, c2 {
r2 = (wx - i) ** 2 + rj2
if (r2 > rin2 && r2 <= rout2) {
skypix[nskypix+1] = Memr[buf+i-c1]
coords[nskypix+1] = (i - c1 + 1) + nx * (j - l1)
nskypix = nskypix + 1
}
}
}
#buf = imgs2r (im, c1, c2, l1, l2)
#tbuf = buf
#do j = l1, l2 {
#rj2 = (wy - j) ** 2
#do i = c1, c2 {
#r2 = (wx - i) ** 2 + rj2
#if (r2 > rin2 && r2 <= rout2) {
#skypix[nskypix+1] = Memr[tbuf+i-c1]
#coords[nskypix+1] = (i - c1 + 1) + nx * (j - l1)
#nskypix = nskypix + 1
#}
#}
#tbuf = tbuf + nx
#}
return (nskypix)
end
# AP_BSKYPIX -- Procedure to fetch the sky pixels from the image
int procedure ap_bskypix (im, wx, wy, rin, rout, datamin, datamax,
skypix, coords, xc, yc, nx, ny, nbad)
pointer im # pointer to IRAF image
real wx, wy # center of sky annulus
real rin, rout # inner and outer radius of sky annulus
real datamin # minimum good value
real datamax # maximum good value
real skypix[ARB] # skypixels
int coords[ARB] # sky subraster coordinates [i + nx * (j - 1)]
real xc, yc # center of sky subraster
int nx, ny # max dimensions of sky subraster (output)
int nbad # number of bad pixels
int i, j, ncols, nlines, c1, c2, l1, l2, nskypix
pointer buf
real xc1, xc2, xl1, xl2, rin2, rout2, rj2, r2, pixval
pointer imgs2r()
#pointer tbuf
begin
if (rout <= rin)
return (0)
# Test for out of bounds sky regions.
ncols = IM_LEN(im,1)
nlines = IM_LEN(im,2)
xc1 = wx - rout
xc2 = wx + rout
xl1 = wy - rout
xl2 = wy + rout
if (xc2 < 1.0 || xc1 > real (ncols) || xl2 < 1.0 || xl1 > real (nlines))
return (0)
# Compute the column and line limits.
c1 = max (1.0, min (real (ncols), wx - rout)) + 0.5
c2 = min (real (ncols), max (1.0, wx + rout)) + 0.5
l1 = max (1.0, min (real (nlines), wy - rout)) + 0.5
l2 = min (real (nlines), max (1.0, wy + rout)) + 0.5
nx = c2 - c1 + 1
ny = l2 - l1 + 1
xc = wx - c1 + 1
yc = wy - l1 + 1
rin2 = rin ** 2
rout2 = rout ** 2
nskypix = 0
nbad = 0
# Fetch the sky pixels.
do j = l1, l2 {
buf = imgs2r (im, c1, c2, j, j)
rj2 = (wy - j) ** 2
do i = c1, c2 {
r2 = (wx - i) ** 2 + rj2
if (r2 > rin2 && r2 <= rout2) {
pixval = Memr[buf+i-c1]
if (pixval < datamin || pixval > datamax)
nbad = nbad + 1
else {
skypix[nskypix+1] = pixval
coords[nskypix+1] = (i - c1 + 1) + nx * (j - l1)
nskypix = nskypix + 1
}
}
}
}
#buf = imgs2r (im, c1, c2, l1, l2)
#tbuf = buf
#do j = l1, l2 {
#rj2 = (wy - j) ** 2
#do i = c1, c2 {
#r2 = (wx - i) ** 2 + rj2
#if (r2 > rin2 && r2 <= rout2) {
#pixval = Memr[tbuf+i-c1]
#if (pixval < datamin || pixval > datamax)
#nbad = nbad + 1
#else {
#skypix[nskypix+1] = pixval
#coords[nskypix+1] = (i - c1 + 1) + nx * (j - l1)
#nskypix = nskypix + 1
#}
#}
#}
#tbuf = tbuf + nx
#}
return (nskypix)
end
|