1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
|
# AP_GMEASURE -- Procedure to measure the fluxes and effective areas of a set of
# apertures assuming a Gaussian weighting function.
procedure ap_gmeasure (im, wx, wy, c1, c2, l1, l2, aperts, sums, areas,
naperts, sigsq, gain, varsky)
pointer im # pointer to image
real wx, wy # center of subraster
int c1, c2 # column limits
int l1, l2 # line limits
real aperts[ARB] # array of apertures
double sums[ARB] # array of sums
double areas[ARB] # aperture areas
int naperts # number of apertures
real sigsq # the profile widht squared
real gain # the sky value
real varsky # the sky variance
int i, j, k, nx, yindex
double fctn, weight, norm
pointer sp, buf, sump, sumpw
real xc, yc, apmaxsq, dy2, r2, r, prof, var
pointer imgs2r()
begin
# Initialize.
call smark (sp)
call salloc (sump, naperts, TY_DOUBLE)
call salloc (sumpw, naperts, TY_DOUBLE)
call aclrd (Memd[sump], naperts)
call aclrd (Memd[sumpw], naperts)
# Get array boundary parameters.
nx = c2 - c1 + 1
xc = wx - c1 + 1
yc = wy - l1 + 1
apmaxsq = (aperts[naperts] + 0.5) ** 2
# Clear out the accumulaters
call aclrd (sums, naperts)
call aclrd (areas, naperts)
# Loop over the pixels.
do j = l1, l2 {
buf = imgs2r (im, c1, c2, j, j)
if (buf == EOF) {
call sfree (sp)
return
}
yindex = j - l1 + 1
dy2 = (yindex - yc) ** 2
do i = 1, nx {
r2 = (i - xc) ** 2 + dy2
if (r2 > apmaxsq)
next
prof = max (exp (-r2 / sigsq), 0.0)
if (prof <= 0.0)
next
var = max (0.0, Memr[buf+i-1])
var = var / gain + varsky
if (var <= 0.0)
next
weight = prof / var
r = sqrt (r2) - 0.5
do k = 1, naperts {
if (r > aperts[k])
next
fctn = max (0.0, min (1.0, aperts[k] - r))
sums[k] = sums[k] + weight * fctn * Memr[buf+i-1]
areas[k] = areas[k] + weight * fctn
Memd[sump+k-1] = Memd[sump+k-1] + prof
Memd[sumpw+k-1] = Memd[sumpw+k-1] + weight * prof
}
}
}
# Normalize.
do k = 1, naperts {
if (Memd[sumpw+k-1] <= 0.0d0)
norm = 0.0d0
else
norm = Memd[sump+k-1] / Memd[sumpw+k-1]
sums[k] = sums[k] * norm
areas[k] = areas[k] * norm
}
call sfree (sp)
end
# AP_BGMEASURE -- Procedure to measure the fluxes and effective areas of a set
# of apertures assuming a Gaussian weighting function.
procedure ap_bgmeasure (im, wx, wy, c1, c2, l1, l2, datamin, datamax,
aperts, sums, areas, naperts, minapert, sigsq, gain, varsky)
pointer im # pointer to image
real wx, wy # center of subraster
int c1, c2 # column limits
int l1, l2 # line limits
real datamin # minimum good data
real datamax # maximum good data
real aperts[ARB] # array of apertures
double sums[ARB] # array of sums
double areas[ARB] # aperture areas
int naperts # number of apertures
int minapert # minimum aperture fo bad pixels
real sigsq # the profile widht squared
real gain # the image gain value
real varsky # the sky variance
int i, j, k, nx, yindex, kindex
double fctn, weight, norm
pointer sp, buf, sump, sumpw
real xc, yc, apmaxsq, dy2, r2, r
real pixval, prof, var
pointer imgs2r()
begin
# Initialize.
call smark (sp)
call salloc (sump, naperts, TY_DOUBLE)
call salloc (sumpw, naperts, TY_DOUBLE)
call aclrd (Memd[sump], naperts)
call aclrd (Memd[sumpw], naperts)
minapert = naperts + 1
# Get array boundary parameters.
nx = c2 - c1 + 1
xc = wx - c1 + 1
yc = wy - l1 + 1
apmaxsq = (aperts[naperts] + 0.5) ** 2
# Clear out the accumulaters
call aclrd (sums, naperts)
call aclrd (areas, naperts)
# Loop over the pixels.
do j = l1, l2 {
buf = imgs2r (im, c1, c2, j, j)
if (buf == EOF) {
call sfree (sp)
return
}
yindex = j - l1 + 1
dy2 = (yindex - yc) ** 2
do i = 1, nx {
r2 = (i - xc) ** 2 + dy2
if (r2 > apmaxsq)
next
prof = max (exp (-r2 / sigsq), 0.0)
if (prof <= 0.0)
next
pixval = Memr[buf+i-1]
var = max (0.0, pixval)
var = pixval / gain + varsky
if (var <= 0.0)
next
weight = prof / var
r = sqrt (r2) - 0.5
kindex = naperts + 1
do k = 1, naperts {
if (r > aperts[k])
next
kindex = min (k, kindex)
fctn = max (0.0, min (1.0, aperts[k] - r))
sums[k] = sums[k] + weight * fctn * pixval
areas[k] = areas[k] + weight * fctn
Memd[sump+k-1] = Memd[sump+k-1] + prof
Memd[sumpw+k-1] = Memd[sumpw+k-1] + weight * prof
}
if (kindex < minapert) {
if (pixval < datamin || pixval > datamax)
minapert = kindex
}
}
}
# Normalize.
do k = 1, naperts {
if (Memd[sumpw+k-1] <= 0.0d0)
norm = 0.0d0
else
norm = Memd[sump+k-1] / Memd[sumpw+k-1]
sums[k] = sums[k] * norm
areas[k] = areas[k] * norm
}
call sfree (sp)
end
|