1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
# AP_TMEASURE -- Procedure to measure the fluxes and effective areas of a set of
# apertures assuming a conical weighting function.
procedure ap_tmeasure (im, wx, wy, c1, c2, l1, l2, aperts, sums, areas,
naperts, fwhmpsf, gain, varsky)
pointer im # pointer to image
real wx, wy # center of subraster
int c1, c2 # column limits
int l1, l2 # line limits
real aperts[ARB] # array of apertures
double sums[ARB] # array of sums
double areas[ARB] # aperture areas
int naperts # number of apertures
real fwhmpsf # width of the profile
real gain # the image gain
real varsky # the sky variance
int i, j, k, yindex, nx
double fctn, weight, norm
pointer buf, sp, sump, sumpw
real xc, yc, apmaxsq, dy2, r2, r, pixval, prof, var
pointer imgs2r()
begin
# Initialize.
call smark (sp)
call salloc (sump, naperts, TY_DOUBLE)
call salloc (sumpw, naperts, TY_DOUBLE)
call aclrd (Memd[sump], naperts)
call aclrd (Memd[sumpw], naperts)
# Set up some array boundary parameters.
nx = c2 - c1 + 1
xc = wx - c1 + 1
yc = wy - l1 + 1
apmaxsq = (aperts[naperts] + 0.5) ** 2
# Clear out the accumulaters
call aclrd (sums, naperts)
call aclrd (areas, naperts)
# Loop over the pixels.
do j = l1, l2 {
buf = imgs2r (im, c1, c2, j, j)
if (buf == NULL) {
call sfree (sp)
return
}
yindex = j - l1 + 1
dy2 = (yindex - yc) ** 2
do i = 1, nx {
r2 = (i - xc) ** 2 + dy2
if (r2 > apmaxsq)
next
r = sqrt (r2)
prof = max (1.0 - r / fwhmpsf, 0.0)
if (prof <= 0.0)
next
pixval = Memr[buf+i-1]
var = max (0.0, pixval)
var = var / gain + varsky
if (var <= 0.0)
next
weight = prof / var
r = r - 0.5
do k = 1, naperts {
if (r > aperts[k])
next
fctn = max (0.0, min (1.0, aperts[k] - r))
Memd[sump+k-1] = Memd[sump+k-1] + prof
Memd[sumpw+k-1] = Memd[sumpw+k-1] + prof * weight
sums[k] = sums[k] + weight * fctn * pixval
areas[k] = areas[k] + weight * fctn
}
}
}
# Normalize.
do k = 1, naperts {
if (Memd[sumpw+k-1] <= 0.0d0)
norm = 0.0d0
else
norm = Memd[sump+k-1] / Memd[sumpw+k-1]
sums[k] = sums[k] * norm
areas[k] = areas[k] * norm
}
call sfree (sp)
end
# AP_BTMEASURE -- Procedure to measure the fluxes and effective areas of a
# set of apertures assuming a conical weighting function.
procedure ap_btmeasure (im, wx, wy, c1, c2, l1, l2, datamin, datamax,
aperts, sums, areas, naperts, minapert, fwhmpsf, gain, varsky)
pointer im # pointer to image
real wx, wy # center of subraster
int c1, c2 # column limits
int l1, l2 # line limits
real datamin # minimum good data value
real datamax # maximum good data value
real aperts[ARB] # array of apertures
double sums[ARB] # array of sums
double areas[ARB] # aperture areas
int naperts # number of apertures
int minapert # minimum aperture
real fwhmpsf # width of the profile
real gain # the image gain
real varsky # the sky variance
int i, j, k, yindex, kindex, nx
double fctn, weight, norm
pointer buf, sp, sump, sumpw
real xc, yc, apmaxsq, dy2, r2, r, pixval, prof, var
pointer imgs2r()
begin
# Initialize.
call smark (sp)
call salloc (sump, naperts, TY_DOUBLE)
call salloc (sumpw, naperts, TY_DOUBLE)
call aclrd (Memd[sump], naperts)
call aclrd (Memd[sumpw], naperts)
minapert = naperts + 1
# Set up some array boundary parameters.
nx = c2 - c1 + 1
xc = wx - c1 + 1
yc = wy - l1 + 1
apmaxsq = (aperts[naperts] + 0.5) ** 2
# Clear out the accumulaters
call aclrd (sums, naperts)
call aclrd (areas, naperts)
# Loop over the pixels.
do j = l1, l2 {
buf = imgs2r (im, c1, c2, j, j)
if (buf == NULL) {
call sfree (sp)
return
}
yindex = j - l1 + 1
dy2 = (yindex - yc) ** 2
do i = 1, nx {
r2 = (i - xc) ** 2 + dy2
if (r2 > apmaxsq)
next
r = sqrt (r2)
prof = max (1.0 - r / fwhmpsf, 0.0)
if (prof <= 0.0)
next
pixval = Memr[buf+i-1]
var = max (0.0, pixval)
var = var / gain + varsky
if (var <= 0.0)
next
weight = prof / var
r = r - 0.5
kindex = naperts + 1
do k = 1, naperts {
if (r > aperts[k])
next
kindex = min (k, kindex)
fctn = max (0.0, min (1.0, aperts[k] - r))
Memd[sump+k-1] = Memd[sump+k-1] + prof
Memd[sumpw+k-1] = Memd[sumpw+k-1] + prof * weight
sums[k] = sums[k] + weight * fctn * pixval
areas[k] = areas[k] + weight * fctn
}
if (kindex < minapert) {
if (pixval < datamin || pixval > datamax)
minapert = kindex
}
}
}
# Normalize.
do k = 1, naperts {
if (Memd[sumpw+k-1] <= 0.0d0)
norm = 0.0d0
else
norm = Memd[sump+k-1] / Memd[sumpw+k-1]
sums[k] = sums[k] * norm
areas[k] = areas[k] * norm
}
call sfree (sp)
end
|