1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
|
include "../lib/daophotdef.h"
define NGL 4
# DP_PROFILE -- Evaluate the analytic part of the psf function and its
# derivatives.
real procedure dp_profile (ipstyp, dx, dy, par, dhdxc, dhdyc, term, ideriv)
int ipstyp # the analytic psf function type
real dx, dy # distance of point from center of function
real par[ARB] # the current parameter values
real dhdxc, dhdyc # derivatives of the function integral wrt x,y
real term[ARB] # derivatives of the function wrt parameters
int ideriv # compute the derivatives ?
int npt, ix, iy
real d[NGL,NGL], w[NGL,NGL], x[NGL], xsq[NGL], p1xsq[NGL]
real p1p2, dhdsx, dhdsy, erfx, erfy, p1sq, p2sq, y, ysq, p2ysq, profile
real xy, wt, denom, alpha, func, p4fod, wp4fod, f, e, rsq, wf
real wfsq, onemp3, dfby, deby, dbyx0, dbyy0
real daoerf()
data d / 0.0, 0.0, 0.0, 0.0,
-0.28867513, 0.28867513, 0.0, 0.0,
-0.38729833, 0.0, 0.38729833, 0.0,
-0.43056816, -0.16999052, 0.16999052, 0.43056816 /
data w / 1.0, 0.0, 0.0, 0.0,
0.5, 0.5, 0.0, 0.0,
0.27777778, 0.44444444, 0.27777778, 0.0,
0.17392742, 0.32607258, 0.32607258, 0.17392742 /
begin
# Initialize.
profile = 0.0
dhdxc = 0.0
dhdyc = 0.0
# Compute the analytic part of the profile for a given x and y.
switch (ipstyp) {
# Evaluate the Gaussian function
# f = erfx * erfy / (par[1] * par[2])
# par[1] is the hwhm in x; sigma(x) = 0.8493218 * hwhm
# par[2] is the hwhm in y; sigma(y) = 0.8493218 * hwhm
case FCTN_GAUSS:
p1p2 = par[1] * par[2]
erfx = daoerf (dx, 0.0, par[1], dhdxc, dhdsx)
erfy = daoerf (dy, 0.0, par[2], dhdyc, dhdsy)
profile = erfx * erfy / p1p2
dhdxc = dhdxc * erfy / p1p2
dhdyc = dhdyc * erfx / p1p2
if (ideriv > 0) {
term[1] = (dhdsx - erfx / par[1]) * erfy / p1p2
term[2] = (dhdsy - erfy / par[2]) * erfx / p1p2
}
# Evaluate the Moffat25 function
#
# f = (beta - 1) / (ax * ay * (1 + (x/ax) ** 2 + (y/ay) ** 2 +
# (xy * axy)) ** beta)
#
# par[1] is the hwhm in x at y = 0.0
# 1/2 = 1 / (1 + (par[1] / ax) ** 2) ** beta
# so
# 2 ** (1/ beta) - 1 = (par[1] / ax) ** 2
# ax ** 2 = par[1] ** 2 / (2 ** (1 / beta) - 1)
#
# when beta = 2.5 ax ** 2 = 3.129813 * par[1] ** 2
#
# f = 1 / par[1] * par[2] * (1 + 0.3195079 * ((x / par[1]) ** 2 +
# (y / par[2]) ** 2 + xy * par[3])) ** 2.5
#
case FCTN_MOFFAT25:
alpha = 0.3195079
#talpha = 0.6390158
p1sq = par[1] ** 2
p2sq = par[2] ** 2
p1p2 = par[1] * par[2]
xy = dx * dy
if (ideriv > 0)
call aclrr (term, 4)
denom = 1.0 + alpha * (dx ** 2 / p1sq + dy ** 2 / p2sq + xy *
par[3])
if (denom > 1.0e4)
return (profile)
func = 1.0 / (p1p2 * denom ** par[4])
if (func >= 0.046) {
npt = 4
} else if (func >= 0.0022) {
npt = 3
} else if (func >= 0.0001) {
npt = 2
} else if (func >= 1.0e-10) {
profile = (par[4] - 1.0) * func
p4fod = par[4] * alpha * profile / denom
dhdxc = p4fod * (2.0 * dx / p1sq + dy * par[3])
dhdyc = p4fod * (2.0 * dy / p2sq + dx * par[3])
if (ideriv > 0) {
term[1] = (2.0 * p4fod * dx ** 2 / p1sq - profile) /
par[1]
term[2] = (2.0 * p4fod * dy ** 2 / p2sq - profile) /
par[2]
term[3] = - p4fod * xy
term[4] = profile * (1.0 / (par[4] - 1.0) - log (denom))
}
return (profile)
} else {
return (profile)
}
do ix = 1, npt {
x[ix] = dx + d[ix,npt]
xsq[ix] = x[ix] ** 2
p1xsq[ix] = xsq[ix] / p1sq
}
do iy = 1, npt {
y = dy + d[iy,npt]
ysq = y ** 2
p2ysq = ysq / p2sq
do ix = 1, npt {
wt = w[iy,npt] * w[ix,npt]
xy = x[ix] * y
denom = 1.0 + alpha * (p1xsq[ix] + p2ysq + xy * par[3])
func = (par[4] - 1.0) / (p1p2 * denom ** par[4])
p4fod = par[4] * alpha * func / denom
wp4fod = wt * p4fod
wf = wt * func
profile = profile + wf
dhdxc = dhdxc + wp4fod * (2.0 * x[ix] / p1sq +
y * par[3])
dhdyc = dhdyc + wp4fod * (2. * y / p2sq + x[ix] *
par[3])
if (ideriv > 0) {
term[1] = term[1] + (2.0 * wp4fod * p1xsq[ix] - wf) /
par[1]
term[2] = term[2] + (2.0 * wp4fod * p2ysq - wf) /
par[2]
term[3] = term[3] - wp4fod * xy
term[4] = term[4] + wf * (1.0 / (par[4] - 1.0) -
log (denom))
}
}
}
#
# Penny function which has a gaussian core and lorentzian wings.
# The lorentzian is elongated along the x and y axes.
case FCTN_PENNY1:
p1sq = par[1] ** 2
p2sq = par[2] ** 2
onemp3 = 1.0 - par[3]
xy = dx * dy
if (ideriv > 0)
call aclrr (term, 4)
rsq = dx ** 2 / p1sq + dy ** 2 / p2sq
if (rsq > 1.0e10)
return (profile)
f = 1.0 / (1.0 + rsq)
rsq = rsq + xy * par[4]
if (rsq < 34.0) {
e = exp (-0.6931472 * rsq)
func = par[3] * e + onemp3 * f
} else {
e = 0.0
func = onemp3 * f
}
if (func >= 0.046) {
npt = 4
} else if (func >= 0.0022) {
npt = 3
} else if (func >= 0.0001) {
npt = 2
} else if (func >= 1.0e-10) {
profile = func
dfby = onemp3 * f ** 2
deby = 0.6931472 * par[3] * e
dbyx0 = 2.0 * dx / p1sq
dbyy0 = 2.0 * dy / p2sq
dhdxc = deby * (dbyx0 + dy * par[4]) + dfby * dbyx0
dhdyc = deby * (dbyy0 + dx * par[4]) + dfby * dbyy0
if (ideriv > 0) {
dbyx0 = dbyx0 * dx / par[1]
dbyy0 = dbyy0 * dy / par[2]
dfby = dfby + deby
term[1] = dfby * dbyx0
term[2] = dfby * dbyy0
term[3] = e - f
term[4] = - deby * xy / (0.5 - abs(par[4]))
}
return (profile)
} else {
return (profile)
}
do ix = 1, npt {
x[ix] = dx + d[ix,npt]
p1xsq[ix] = x[ix] / p1sq
}
do iy = 1, npt {
y = dy + d[iy,npt]
p2ysq = y / p2sq
do ix = 1, npt {
wt = w[iy,npt] * w[ix,npt]
xy = x[ix] * y
rsq = p1xsq[ix] * x[ix] + p2ysq * y
f = 1.0 / (1.0 + rsq)
rsq = rsq + xy * par[4]
if (rsq < 34.0) {
e = exp (- 0.6931472 * rsq)
func = par[3] * e + onemp3 * f
deby = 0.6931472 * wt * par[3] * e
} else {
e = 0.0
func = onemp3 * f
deby = 0.0
}
profile = profile + wt * func
dfby = wt * onemp3 * f ** 2
dbyx0 = 2.0 * p1xsq[ix]
dbyy0 = 2.0 * p2ysq
dhdxc = dhdxc + deby * (dbyx0 + dy * par[4]) + dfby * dbyx0
dhdyc = dhdyc + deby * (dbyy0 + dx * par[4]) + dfby * dbyy0
if (ideriv > 0) {
dbyx0 = dbyx0 * dx / par[1]
dbyy0 = dbyy0 * dy / par[2]
term[1] = term[1] + (dfby + deby) * dbyx0
term[2] = term[2] + (dfby + deby) * dbyy0
term[3] = term[3] + wt * (e - f)
term[4] = term[4] - deby * xy
}
}
}
# Penny function which has a gaussian core and lorentzian wings.
# The gaussian and lorentzian may be tilted in different directions.
case FCTN_PENNY2:
p1sq = par[1] ** 2
p2sq = par[2] ** 2
onemp3 = 1.0 - par[3]
xy = dx * dy
if (ideriv > 0)
call aclrr (term, 5)
rsq = dx ** 2 / p1sq + dy ** 2 / p2sq
dfby = rsq + par[5] * xy
if (dfby > 1.0e10)
return (profile)
f = 1.0 / (1.0 + dfby)
deby = rsq + par[4] * xy
if (deby < 34.0)
e = exp (-0.6931472 * deby)
else
e = 0.0
func = par[3] * e + onemp3 * f
if (func >= 0.046) {
npt = 4
} else if (func >= 0.0022) {
npt = 3
} else if (func >= 0.0001) {
npt = 2
} else if (func >= 1.0e-10) {
profile = func
dfby = onemp3 * f ** 2
deby = 0.6931472 * par[3] * e
dbyx0 = 2.0 * dx / p1sq
dbyy0 = 2.0 * dy / p2sq
dhdxc = deby * (dbyx0 + dy * par[4]) + dfby * (dbyx0 + dy *
par[5])
dhdyc = deby * (dbyy0 + dx * par[4]) + dfby * (dbyy0 + dx *
par[5])
if (ideriv > 0) {
dbyx0 = dbyx0 * dx / par[1]
dbyy0 = dbyy0 * dy / par[2]
term[5] = -dfby * xy
dfby = dfby + deby
term[1] = dfby * dbyx0
term[2] = dfby * dbyy0
term[3] = e - f
term[4] = - deby * xy
}
return (profile)
} else {
return (profile)
}
do ix = 1, npt {
x[ix] = dx + d[ix,npt]
p1xsq[ix] = x[ix] / p1sq
}
do iy = 1, npt {
y = dy + d[iy,npt]
p2ysq = y / p2sq
do ix = 1, npt {
wt = w[iy,npt] * w[ix,npt]
xy = x[ix] * y
rsq = p1xsq[ix] * x[ix] + p2ysq * y
f = 1.0 / (1.0 + rsq + par[5] * xy)
deby = rsq + par[4] * xy
if (deby < 34.0) {
e = exp (- 0.6931472 * deby)
func = par[3] * e + onemp3 * f
deby = 0.6931472 * wt * par[3] * e
} else {
e = 0.0
func = onemp3 * f
deby = 0.0
}
profile = profile + wt * func
dfby = wt * onemp3 * f ** 2
dbyx0 = 2.0 * p1xsq[ix]
dbyy0 = 2.0 * p2ysq
dhdxc = dhdxc + deby * (dbyx0 + dy * par[4]) + dfby *
(dbyx0 + dy * par[5])
dhdyc = dhdyc + deby * (dbyy0 + dx * par[4]) + dfby *
(dbyy0 + dx * par[5])
if (ideriv > 0) {
dbyx0 = dbyx0 * dx / par[1]
dbyy0 = dbyy0 * dy / par[2]
term[1] = term[1] + (dfby + deby) * dbyx0
term[2] = term[2] + (dfby + deby) * dbyy0
term[3] = term[3] + wt * (e - f)
term[4] = term[4] - deby * xy
term[5] = term[5] - dfby * xy
}
}
}
# Evaluate the Moffat15 function
#
# f = (beta - 1) / (ax * ay * (1 + (x/ax) ** 2 + (y/ay) ** 2 +
# (xy * axy)) ** beta)
#
# par[1] is the hwhm in x at y = 0.0
# 1/2 = 1 / (1 + (par[1] / ax) ** 2) ** beta
# so
# 2 ** (1/ beta) - 1 = (par[1] / ax) ** 2
# ax ** 2 = par[1] ** 2 / (2 ** (1 / beta) - 1)
#
# when beta = 1.5 ax ** 2 = 1.7024144 * par[1] ** 2
#
# f = 1 / par[1] * par[2] * (1 + 0.5874011 * ((x / par[1]) ** 2 +
# (y / par[2]) ** 2 + xy * par[3])) ** 2.5
#
case FCTN_MOFFAT15:
alpha = 0.5874011
#talpha = 1.1748021
p1sq = par[1] ** 2
p2sq = par[2] ** 2
p1p2 = par[1] * par[2]
xy = dx * dy
if (ideriv > 0)
call aclrr (term, 4)
denom = 1.0 + alpha * (dx ** 2 / p1sq + dy ** 2 / p2sq + xy *
par[3])
if (denom > 5.0e6)
return (profile)
func = 1.0 / (p1p2 * denom ** par[4])
if (func >= 0.046) {
npt = 4
} else if (func >= 0.0022) {
npt = 3
} else if (func >= 0.0001) {
npt = 2
} else if (func >= 1.0e-10) {
profile = (par[4] - 1.0) * func
p4fod = par[4] * alpha * profile / denom
dhdxc = p4fod * (2.0 * dx / p1sq + dy * par[3])
dhdyc = p4fod * (2.0 * dy / p2sq + dx * par[3])
if (ideriv > 0) {
term[1] = (2.0 * p4fod * dx ** 2 / p1sq - profile) /
par[1]
term[2] = (2.0 * p4fod * dy ** 2 / p2sq - profile) /
par[2]
term[3] = - p4fod * xy
term[4] = profile * (1.0 / (par[4] - 1.0) - log (denom))
}
return (profile)
} else {
return (profile)
}
do ix = 1, npt {
x[ix] = dx + d[ix,npt]
xsq[ix] = x[ix] ** 2
p1xsq[ix] = xsq[ix] / p1sq
}
do iy = 1, npt {
y = dy + d[iy,npt]
ysq = y ** 2
p2ysq = ysq / p2sq
do ix = 1, npt {
wt = w[iy,npt] * w[ix,npt]
xy = x[ix] * y
denom = 1.0 + alpha * (p1xsq[ix] + p2ysq + xy *
par[3])
func = (par[4] - 1.0) / (p1p2 * denom ** par[4])
p4fod = par[4] * alpha * func / denom
wp4fod = wt * p4fod
wf = wt * func
profile = profile + wf
dhdxc = dhdxc + wp4fod * (2.0 * x[ix] / p1sq + y *
par[3])
dhdyc = dhdyc + wp4fod * (2. * y / p2sq + x[ix] *
par[3])
if (ideriv > 0) {
term[1] = term[1] + (2.0 * wp4fod * p1xsq[ix] - wf) /
par[1]
term[2] = term[2] + (2.0 * wp4fod * p2ysq - wf) /
par[2]
term[3] = term[3] - wp4fod * xy
term[4] = term[4] + wf * (1.0 / (par[4] - 1.0) -
log (denom))
}
}
}
case FCTN_LORENTZ:
p1sq = par[1] ** 2
p2sq = par[2] ** 2
p1p2 = par[1] * par[2]
xy = dx * dy
if (ideriv > 0)
call aclrr (term, 3)
denom = 1.0 + dx ** 2 / p1sq + dy ** 2 / p2sq + xy * par[3]
if (denom > 1.0e10)
return (profile)
func = 1.0 / denom
if (func >= 0.046) {
npt = 4
} else if (func >= 0.0022) {
npt = 3
} else if (func >= 0.0001) {
npt = 2
} else if (func >= 1.0e-10) {
profile = func
wfsq = func ** 2
dhdxc = wfsq * (2.0 * dx / p1sq + dy * par[3])
dhdyc = wfsq * (2.0 * dy / p2sq + dx * par[3])
if (ideriv > 0) {
term[1] = wfsq * (2.0 * dx ** 2 / p1sq) / par[1]
term[2] = wfsq * (2.0 * dy ** 2 / p2sq) / par[2]
term[3] = - wfsq * xy
}
return (profile)
} else {
return (profile)
}
do ix = 1, npt {
x[ix] = dx + d[ix,npt]
xsq[ix] = x[ix] ** 2
p1xsq[ix] = xsq[ix] / p1sq
}
do iy = 1, npt {
y = dy + d[iy,npt]
ysq = y ** 2
p2ysq = ysq / p2sq
do ix = 1, npt {
wt = w[iy,npt] * w[ix,npt]
xy = x[ix] * y
denom = 1.0 + p1xsq[ix] + p2ysq + xy * par[3]
func = 1.0 / denom
wf = wt * func
wfsq = wf * func
profile = profile + wf
dhdxc = dhdxc + wfsq * (2.0 * x[ix] / p1sq + y * par[3])
dhdyc = dhdyc + wfsq * (2.0 * y / p2sq + x[ix] * par[3])
if (ideriv > 0) {
term[1] = term[1] + wfsq * (2.0 * p1xsq[ix]) / par[1]
term[2] = term[2] + wfsq * (2.0 * p2ysq) / par[2]
term[3] = term[3] - wfsq * xy
}
}
}
default:
profile = INDEFR
}
return (profile)
end
|