aboutsummaryrefslogtreecommitdiff
path: root/noao/digiphot/daophot/daolib/profile.x
blob: 96e1a531a15d3e1220bc4053fdbde1070dcc4c3c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
include "../lib/daophotdef.h"

define	NGL	4

# DP_PROFILE -- Evaluate the analytic part of the psf function and its
# derivatives.

real procedure dp_profile (ipstyp, dx, dy, par, dhdxc, dhdyc, term, ideriv)

int	ipstyp			# the analytic psf function type
real	dx, dy			# distance of point from center of function
real	par[ARB]		# the current parameter values
real	dhdxc, dhdyc		# derivatives of the function integral wrt x,y
real	term[ARB]		# derivatives of the function wrt parameters
int	ideriv			# compute the derivatives ?

int	npt, ix, iy
real	d[NGL,NGL], w[NGL,NGL], x[NGL], xsq[NGL], p1xsq[NGL]
real	p1p2, dhdsx, dhdsy, erfx, erfy, p1sq, p2sq, y, ysq, p2ysq, profile
real	xy, wt, denom, alpha, func, p4fod, wp4fod, f, e, rsq, wf
real	wfsq, onemp3, dfby, deby, dbyx0, dbyy0
real	daoerf()

data    d / 0.0,         0.0,        0.0,        0.0,
            -0.28867513,  0.28867513, 0.0,        0.0,
            -0.38729833,  0.0,        0.38729833, 0.0,
            -0.43056816, -0.16999052, 0.16999052, 0.43056816 /
data    w / 1.0,         0.0,        0.0,        0.0,
             0.5,         0.5,        0.0,        0.0,
             0.27777778,  0.44444444, 0.27777778, 0.0,
             0.17392742,  0.32607258, 0.32607258, 0.17392742 /
begin
	# Initialize.
	profile = 0.0
	dhdxc = 0.0
	dhdyc = 0.0

	# Compute the analytic part of the profile for a given x and y.

	switch (ipstyp) {

	# Evaluate the Gaussian function
	#     f = erfx * erfy / (par[1] * par[2])
	#     par[1] is the hwhm in x; sigma(x) = 0.8493218 * hwhm
	#     par[2] is the hwhm in y; sigma(y) = 0.8493218 * hwhm

	case FCTN_GAUSS:

	    p1p2 = par[1] * par[2]
	    erfx = daoerf (dx, 0.0, par[1], dhdxc, dhdsx)
	    erfy = daoerf (dy, 0.0, par[2], dhdyc, dhdsy)
	    profile = erfx * erfy / p1p2
	    dhdxc = dhdxc * erfy / p1p2
	    dhdyc = dhdyc * erfx / p1p2
	    if (ideriv > 0) {
		term[1] = (dhdsx - erfx / par[1]) * erfy / p1p2
		term[2] = (dhdsy - erfy / par[2]) * erfx / p1p2
	    }

	# Evaluate the Moffat25 function
	#
	# f = (beta - 1) / (ax * ay * (1 + (x/ax) ** 2 + (y/ay) ** 2 +
	#     (xy * axy)) ** beta)
	#
	#     par[1] is the hwhm in x at y = 0.0
	#     1/2 = 1 / (1 + (par[1] / ax) ** 2) ** beta
	# so
	#     2 ** (1/ beta) - 1 = (par[1] / ax) ** 2
	#     ax ** 2 = par[1] ** 2 / (2 ** (1 / beta) - 1)
	#
	# when   beta = 2.5   ax ** 2 = 3.129813 * par[1] ** 2
	#
	# f = 1 / par[1] * par[2] * (1 + 0.3195079 * ((x / par[1]) ** 2 +
	#     (y / par[2]) ** 2 + xy * par[3])) ** 2.5
	#

	case FCTN_MOFFAT25:

	    alpha = 0.3195079
	    #talpha = 0.6390158
	    p1sq = par[1] ** 2
	    p2sq = par[2] ** 2
	    p1p2 = par[1] * par[2]
	    xy = dx * dy
	    if (ideriv > 0)
	        call aclrr (term, 4)

	    denom = 1.0 + alpha * (dx ** 2 / p1sq + dy ** 2 / p2sq + xy *
		par[3])
	    if (denom > 1.0e4)
		return (profile)
	    func = 1.0 / (p1p2 * denom ** par[4])
	    if (func >= 0.046) {
		npt = 4
	    } else if (func >= 0.0022) {
		npt = 3
	    } else if (func >= 0.0001) {
		npt = 2
	    } else if (func >= 1.0e-10) {
		profile = (par[4] - 1.0) * func
		p4fod = par[4] * alpha * profile / denom
		dhdxc = p4fod * (2.0 * dx / p1sq + dy * par[3])
		dhdyc = p4fod * (2.0 * dy / p2sq + dx * par[3])
		if (ideriv > 0) {
		    term[1] =  (2.0 * p4fod * dx ** 2 / p1sq - profile) /
		        par[1]
		    term[2] =  (2.0 * p4fod * dy ** 2 / p2sq - profile) /
		        par[2]
		    term[3] = - p4fod * xy
		    term[4] = profile * (1.0 / (par[4] - 1.0) - log (denom))
		}
		return (profile)
	    } else {
		return (profile)
	    }

	    do ix = 1, npt {
		x[ix] = dx + d[ix,npt]
		xsq[ix] = x[ix] ** 2
		p1xsq[ix] = xsq[ix] / p1sq
	    }

	    do iy = 1, npt {
		y = dy + d[iy,npt]
		ysq = y ** 2
		p2ysq = ysq / p2sq
		do ix = 1, npt  {
		    wt = w[iy,npt] * w[ix,npt]
		    xy = x[ix] * y
		    denom = 1.0 + alpha * (p1xsq[ix] + p2ysq + xy * par[3])
      		    func = (par[4] - 1.0) / (p1p2 * denom ** par[4])
		    p4fod = par[4] * alpha * func / denom
		    wp4fod = wt * p4fod
		    wf = wt * func
		    profile = profile + wf
		    dhdxc = dhdxc + wp4fod * (2.0 * x[ix] / p1sq +
		        y * par[3])
		    dhdyc = dhdyc + wp4fod * (2. * y / p2sq + x[ix] *
		        par[3])
		    if (ideriv > 0) {
			term[1] = term[1] + (2.0 * wp4fod * p1xsq[ix] - wf) /
			    par[1]
			term[2] = term[2] + (2.0 * wp4fod * p2ysq - wf) /
			    par[2]
			term[3] = term[3] - wp4fod * xy
			term[4] = term[4] + wf * (1.0 / (par[4] - 1.0) -
			    log (denom))
		    }
		}
	    }

	#
	# Penny function which has a gaussian core and lorentzian wings.
	# The lorentzian is elongated along the x and y axes.

	case FCTN_PENNY1:

	    p1sq = par[1] ** 2
	    p2sq = par[2] ** 2
	    onemp3 = 1.0 - par[3]
	    xy = dx * dy
	    if (ideriv > 0)
	        call aclrr (term, 4)

	    rsq = dx ** 2 / p1sq + dy ** 2 / p2sq
	    if (rsq > 1.0e10)
		return (profile)

	    f = 1.0 / (1.0 + rsq)
	    rsq = rsq + xy * par[4]
	    if (rsq < 34.0) {
		e = exp (-0.6931472 * rsq)
		func = par[3] * e + onemp3 * f
	    } else {
		e = 0.0
		func = onemp3 * f
	    }

	    if (func >= 0.046) {
		npt = 4
	    } else if (func >= 0.0022) {
		npt = 3
	    } else if (func >= 0.0001) {
		npt = 2
	    } else if (func >= 1.0e-10) {
		profile = func
		dfby = onemp3 * f ** 2
		deby = 0.6931472 * par[3] * e
		dbyx0 = 2.0 * dx / p1sq
		dbyy0 = 2.0 * dy / p2sq
		dhdxc = deby * (dbyx0 + dy * par[4]) + dfby * dbyx0
		dhdyc = deby * (dbyy0 + dx * par[4]) + dfby * dbyy0
		if (ideriv > 0) {
		    dbyx0 = dbyx0 * dx / par[1]
		    dbyy0 = dbyy0 * dy / par[2]
		    dfby = dfby + deby
		    term[1] = dfby * dbyx0
		    term[2] = dfby * dbyy0
		    term[3] = e - f
		    term[4] = - deby * xy / (0.5 - abs(par[4]))
		}
		return (profile)
	    } else {
		return (profile)
	    }

	    do ix = 1, npt {
		x[ix] = dx + d[ix,npt]
		p1xsq[ix] = x[ix] / p1sq
	    }

	    do iy = 1, npt {
		y = dy + d[iy,npt]
		p2ysq = y / p2sq
		do ix = 1, npt {
		    wt = w[iy,npt] * w[ix,npt]
		    xy = x[ix] * y
		    rsq = p1xsq[ix] * x[ix] + p2ysq * y
		    f = 1.0 / (1.0 + rsq)
		    rsq = rsq + xy * par[4]
		    if (rsq < 34.0) {
		        e = exp (- 0.6931472 * rsq)
		        func = par[3] * e + onemp3 * f
			deby = 0.6931472 * wt * par[3] * e
		    } else {
			e = 0.0
			func = onemp3 * f
			deby = 0.0
		    }
		    profile = profile + wt * func
		    dfby = wt * onemp3 * f ** 2
		    dbyx0 = 2.0 * p1xsq[ix]
		    dbyy0 = 2.0 * p2ysq
		    dhdxc = dhdxc + deby * (dbyx0 + dy * par[4]) + dfby * dbyx0
		    dhdyc = dhdyc + deby * (dbyy0 + dx * par[4]) + dfby * dbyy0
		    if (ideriv > 0) {
			dbyx0 = dbyx0 * dx / par[1]
			dbyy0 = dbyy0 * dy / par[2]
			term[1] = term[1] + (dfby + deby) * dbyx0
			term[2] = term[2] + (dfby + deby) * dbyy0
			term[3] = term[3] + wt * (e - f)
			term[4] = term[4] - deby * xy
		    }
		}
	    }  

	# Penny function which has a gaussian core and lorentzian wings.
	# The gaussian and lorentzian may be tilted in different directions.

	case FCTN_PENNY2:

	    p1sq = par[1] ** 2
	    p2sq = par[2] ** 2
	    onemp3 = 1.0 - par[3]
	    xy = dx * dy
	    if (ideriv > 0)
	        call aclrr (term, 5)

	    rsq = dx ** 2 / p1sq + dy ** 2 / p2sq
	    dfby = rsq + par[5] * xy
	    if (dfby > 1.0e10)
		return (profile)
	    f = 1.0 / (1.0 + dfby)

	    deby = rsq + par[4] * xy
	    if (deby < 34.0)
		e = exp (-0.6931472 * deby)
	    else
		e = 0.0

	    func = par[3] * e + onemp3 * f
	    if (func >= 0.046) {
		npt = 4
	    } else if (func >= 0.0022) {
		npt = 3
	    } else if (func >= 0.0001) {
		npt = 2
	    } else if (func >= 1.0e-10) {
		profile = func
		dfby = onemp3 * f ** 2
		deby = 0.6931472 * par[3] * e
		dbyx0 = 2.0 * dx / p1sq
		dbyy0 = 2.0 * dy / p2sq
		dhdxc = deby * (dbyx0 + dy * par[4]) + dfby * (dbyx0 + dy *
		    par[5])
		dhdyc = deby * (dbyy0 + dx * par[4]) + dfby * (dbyy0 + dx *
		    par[5])
		if (ideriv > 0) {
		    dbyx0 = dbyx0 * dx / par[1]
		    dbyy0 = dbyy0 * dy / par[2]
		    term[5] = -dfby * xy
		    dfby = dfby + deby
		    term[1] = dfby * dbyx0
		    term[2] = dfby * dbyy0
		    term[3] = e - f
		    term[4] = - deby * xy 
		}
		return (profile)
	    } else {
		return (profile)
	    }

	    do ix = 1, npt {
		x[ix] = dx + d[ix,npt]
		p1xsq[ix] = x[ix] / p1sq
	    }

	    do iy = 1, npt {
		y = dy + d[iy,npt]
		p2ysq = y / p2sq
		do ix = 1, npt {
		    wt = w[iy,npt] * w[ix,npt]
		    xy = x[ix] * y
		    rsq = p1xsq[ix] * x[ix] + p2ysq * y
		    f = 1.0 / (1.0 + rsq + par[5] * xy)
		    deby = rsq + par[4] * xy
		    if (deby < 34.0) {
		        e = exp (- 0.6931472 * deby)
		        func = par[3] * e + onemp3 * f
			deby = 0.6931472 * wt * par[3] * e
		    } else {
			e = 0.0
			func = onemp3 * f
			deby = 0.0
		    }
		    profile = profile + wt * func
		    dfby = wt * onemp3 * f ** 2
		    dbyx0 = 2.0 * p1xsq[ix]
		    dbyy0 = 2.0 * p2ysq
		    dhdxc = dhdxc + deby * (dbyx0 + dy * par[4]) + dfby *
		        (dbyx0 + dy * par[5])
		    dhdyc = dhdyc + deby * (dbyy0 + dx * par[4]) + dfby *
		        (dbyy0 + dx * par[5])
		    if (ideriv > 0) {
			dbyx0 = dbyx0 * dx / par[1]
			dbyy0 = dbyy0 * dy / par[2]
			term[1] = term[1] + (dfby + deby) * dbyx0
			term[2] = term[2] + (dfby + deby) * dbyy0
			term[3] = term[3] + wt * (e - f)
			term[4] = term[4] - deby * xy
			term[5] = term[5] - dfby * xy
		    }
		}
	    }  

	# Evaluate the Moffat15 function
	#
	# f = (beta - 1) / (ax * ay * (1 + (x/ax) ** 2 + (y/ay) ** 2 +
	#     (xy * axy)) ** beta)
	#
	#     par[1] is the hwhm in x at y = 0.0
	#     1/2 = 1 / (1 + (par[1] / ax) ** 2) ** beta
	# so
	#     2 ** (1/ beta) - 1 = (par[1] / ax) ** 2
	#     ax ** 2 = par[1] ** 2 / (2 ** (1 / beta) - 1)
	#
	# when   beta = 1.5   ax ** 2 = 1.7024144 * par[1] ** 2
	#
	# f = 1 / par[1] * par[2] * (1 + 0.5874011 * ((x / par[1]) ** 2 +
	#     (y / par[2]) ** 2 + xy * par[3])) ** 2.5
	#

	case FCTN_MOFFAT15:

	    alpha = 0.5874011
	    #talpha = 1.1748021
	    p1sq = par[1] ** 2
	    p2sq = par[2] ** 2
	    p1p2 = par[1] * par[2]
	    xy = dx * dy
	    if (ideriv > 0)
	        call aclrr (term, 4)

	    denom = 1.0 + alpha * (dx ** 2 / p1sq + dy ** 2 / p2sq + xy *
		par[3])
	    if (denom > 5.0e6)
		return (profile)
	    func = 1.0 / (p1p2 * denom ** par[4])
	    if (func >= 0.046) {
		npt = 4
	    } else if (func >= 0.0022) {
		npt = 3
	    } else if (func >= 0.0001) {
		npt = 2
	    } else if (func >= 1.0e-10) {
		profile = (par[4] - 1.0) * func
		p4fod = par[4] * alpha * profile / denom
		dhdxc = p4fod * (2.0 * dx / p1sq + dy * par[3])
		dhdyc = p4fod * (2.0 * dy / p2sq + dx * par[3])
		if (ideriv > 0) {
		    term[1] =  (2.0 * p4fod * dx ** 2 / p1sq - profile) /
		        par[1]
		    term[2] =  (2.0 * p4fod * dy ** 2 / p2sq - profile) /
		        par[2]
		    term[3] = - p4fod * xy
		    term[4] = profile * (1.0 / (par[4] - 1.0) - log (denom))
		}
		return (profile)
	    } else {
		return (profile)
	    }

	    do ix = 1, npt {
		x[ix] = dx + d[ix,npt]
		xsq[ix] = x[ix] ** 2
		p1xsq[ix] = xsq[ix] / p1sq
	    }

	    do iy = 1, npt {
		y = dy + d[iy,npt]
		ysq = y ** 2
		p2ysq = ysq / p2sq
		do ix = 1, npt {
		    wt = w[iy,npt] * w[ix,npt]
		    xy = x[ix] * y
		    denom = 1.0 + alpha * (p1xsq[ix] + p2ysq + xy *
		        par[3])
		    func = (par[4] - 1.0) / (p1p2 * denom ** par[4])
		    p4fod = par[4] * alpha * func / denom
		    wp4fod = wt * p4fod
		    wf = wt * func
		    profile = profile + wf
		    dhdxc = dhdxc + wp4fod * (2.0 * x[ix] / p1sq + y *
		        par[3])
		    dhdyc = dhdyc + wp4fod * (2. * y / p2sq + x[ix] *
		        par[3])
		    if (ideriv > 0) {
			term[1] = term[1] + (2.0 * wp4fod * p1xsq[ix] - wf) /
			    par[1]
			term[2] = term[2] + (2.0 * wp4fod * p2ysq - wf) /
			    par[2]
			term[3] = term[3] - wp4fod * xy
			term[4] = term[4] + wf * (1.0 / (par[4] - 1.0) -
			    log (denom))
      		    }
		}
	    } 

	case FCTN_LORENTZ:

	    p1sq = par[1] ** 2
	    p2sq = par[2] ** 2
	    p1p2 = par[1] * par[2]
	    xy = dx * dy
	    if (ideriv > 0)
	        call aclrr (term, 3)

	    denom = 1.0 + dx ** 2 / p1sq + dy ** 2 / p2sq + xy * par[3]
	    if (denom > 1.0e10)
		return (profile)
	    func = 1.0 / denom
	    if (func >= 0.046) {
		npt = 4
	    } else if (func >= 0.0022) {
		npt = 3
	    } else if (func >= 0.0001) {
		npt = 2
	    } else if (func >= 1.0e-10) {
		profile = func
		wfsq = func ** 2
		dhdxc = wfsq * (2.0 * dx / p1sq + dy * par[3])
		dhdyc = wfsq * (2.0 * dy / p2sq + dx * par[3])
		if (ideriv > 0) {
		    term[1] = wfsq * (2.0 * dx ** 2 / p1sq) / par[1]
		    term[2] = wfsq * (2.0 * dy ** 2 / p2sq) / par[2]
		    term[3] = - wfsq * xy
		}
		return (profile)
	    } else {
		return (profile)
	    }

	    do ix = 1, npt {
		x[ix] = dx + d[ix,npt]
		xsq[ix] = x[ix] ** 2
		p1xsq[ix] = xsq[ix] / p1sq
	    }

	    do iy = 1, npt {
		y = dy + d[iy,npt]
		ysq = y ** 2
		p2ysq = ysq / p2sq
		do ix = 1, npt {
		    wt = w[iy,npt] * w[ix,npt]
		    xy = x[ix] * y
		    denom = 1.0 + p1xsq[ix] + p2ysq + xy * par[3]
		    func = 1.0 / denom
		    wf = wt * func
		    wfsq = wf * func
		    profile = profile + wf
		    dhdxc = dhdxc + wfsq * (2.0 * x[ix] / p1sq + y * par[3])
		    dhdyc = dhdyc + wfsq * (2.0 * y / p2sq + x[ix] * par[3])
		    if (ideriv > 0) {
			term[1] = term[1] + wfsq * (2.0 * p1xsq[ix]) / par[1]
			term[2] = term[2] + wfsq * (2.0 * p2ysq) / par[2]
			term[3] = term[3] - wfsq * xy
		    }
		}
	    }

	default:
	    profile = INDEFR
	}

	return (profile)
end